精英家教网 > 高中数学 > 题目详情
函数f(x)=|ex-bx|,其中e为自然对数的底.
(1)当b=1时,求曲线y=f(x)在x=1处的切线方程;
(2)若函数y=f(x)有且只有一个零点,求实数b的取值范围;
(3)当b>0时,判断函数y=f(x)在区间(0,2)上是否存在极大值.若存在,求出极大值及相应实数b的取值范围.
【答案】分析:(1)记g(x)=ex-bx,当b=1时,g′(x)=ex-1,从而可得f′(1)=g′(1)=e-1,由此可求切线方程;
(2)f(x)=0同解于g(x)=0,因此,只需g(x)=0有且只有一个解,即方程ex-bx=0有且只有一个解,因为x=0不满足方程,所以方程同解于b=,分类讨论可得当x∈(0,+∞)时,方程有且只有一解等价于b=e;当x∈(-∞,0)时,方程有且只有一解等价于b∈(-∞,0),从而可得b的取值范围;
(3)由g′(x)=ex-b=0,得x=lnb,从而可得在x=lnb时,g(x)取极小值g(lnb)=b-blnb=b(1-lnb),再分类讨论,即可得到结论.
解答:解:(1)记g(x)=ex-bx.
当b=1时,g′(x)=ex-1.
当x>0时,g′(x)>0,所以g(x)在(0,+∞)上为增函数.
又g(0)=1>0,所以当x∈(0,+∞)时,g(x)>0.
所以当x∈(0,+∞)时,f(x)=|g(x)|=g(x),
所以f′(1)=g′(1)=e-1.
所以曲线y=f(x)在点(1,e-1)处的切线方程为:y-(e-1)=(e-1)(x-1),即y=(e-1)x.  …(4分)
(2)f(x)=0同解于g(x)=0,因此,只需g(x)=0有且只有一个解,即方程ex-bx=0有且只有一个解.
因为x=0不满足方程,所以方程同解于b=.  …(6分)
令h(x)=,由h′(x)==0得x=1.
当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,h(x)∈(e,+∞);
当x∈(0,1)时,h′(x)<0,h(x)单调递减,h(x)∈(e,+∞);
所以当x∈(0,+∞)时,方程b=有且只有一解等价于b=e.…(8分)
当x∈(-∞,0)时,h(x)单调递减,且h(x)∈(-∞,0),
从而方程b=有且只有一解等价于b∈(-∞,0).
综上所述,b的取值范围为(-∞,0)∪{e}.  …(10分)
(3)由g′(x)=ex-b=0,得x=lnb.
当x∈(-∞,lnb)时,g′(x)<0,g(x)单调递减.
当x∈(lnb,+∞)时,g′(x)>0,g(x)单调递增.
所以在x=lnb时,g(x)取极小值g(lnb)=b-blnb=b(1-lnb).
①当0<b≤e时,g(lnb)=b-blnb=b(1-lnb)≥0,从而当x∈R时,g(x)≥0.
所以f(x)=|g(x)|=g(x)在(-∞,+∞)上无极大值.
因此,在x∈(0,2)上也无极大值.      …(12分)
②当b>e时,g(lnb)<0.
因为g(0)=1>0,g(2lnb)=b2-2blnb=b(b-2lnb)>0,
(令k(x)=x-2lnx.由k′(x)=1-=0得x=2,从而当x∈(2,+∞)时,k(x)单调递增,
又k(e)=e-2>0,所以当b>e时,b-2lnb>0.)
所以存在x1∈(0,lnb),x2∈(lnb,2lnb),使得g(x1)=g(x2)=0.
此时f(x)=|g(x)|=
所以f(x)在(-∞,x1)单调递减,在(x1,lnb)上单调递增,在(lnb,x2)单调递减,在(x2,+∞)上单调递增. …(14分)
所以在x=lnb时,f(x)有极大值.
因为x∈(0,2),所以当lnb<2,即e<b<e2时,f(x)在(0,2)上有极大值;
当lnb≥2,即b≥e2 时,f(x)在(0,2)上不存在极大值.
综上所述,在区间(0,2)上,当0<b≤e或b≥e2时,函数y=f(x)不存在极大值;
当e<b<e2时,函数y=f(x),在x=lnb时取极大值f(lnb)=b(lnb-1).…(16分)
点评:本题考查导数知识的运用,考查函数的单调性,考查导数的几何意义,考查函数的极值,考查分类讨论的数学思想,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ex(sinx-cosx),若0≤x≤2011π,则函数f(x)的各极大值之和为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x
(1)证明:对一切x∈R,都有f(x)≥1
(2)证明:1+
1
2
+
1
3
+…+
1
n
>ln(n+1)(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在实数集R上的函数f(x),如果存在函数g(x)=Ax+B(A,B为常数)使得f(x)≥g(x)对任意的x∈R都成立,则称
g(x)为函数f(x)的一个承托函数.以下说法
(1)函数f(x)=x2-2x不存在承托函数;
(2)函数f(x)=x3-3x不存在承托函数;
(3)函数f(x)=
2x
x2-x+1
不存在承托函数;
(4)g(x)=1为函数f(x)=x4-2x3+x2+1的一个承托函数;
(5)g(x)=x为函数f(x)=ex-1的一个承托函数.
中正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex,g(x)=lnx
(1)若曲线h(x)=f(x)+ax2-ex(a∈R)在点(1,h(1))处的切线垂直于y轴,求函数h(x)的单调区间;
(2)若函数F(x)=1-
ax
-g(x) (a∈R)
在区间(0,2)上无极值,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=ex+x-4(e≈2.71828…)的零点所在的一个区间是(  )

查看答案和解析>>

同步练习册答案