(本小题共14分)
为预防病毒暴发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
A组 | B组 | C组 | |
疫苗有效 | 673 |
|
|
疫苗无效 | 77 | 90 |
|
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(1)求的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取多少个?
(3)已知,求不能通过测试的概率.
(本小题共14分)
解:(1)在全体样本中随机抽取1个,抽到B组疫苗有效的概率约为其频率
即 …………………………(4分)
(2)C组样本个数为y+z=2000-(673+77+660+90)=500,
现用分层抽样的方法在全体样本中抽取360个测试结果,
则 ………………………………(7分)
答:应在C组抽取个数为90.……………………………………………………8分
(3)设测试不能通过事件为A ,C组疫苗有效与无效的可能的情况记为(y,z) 由(2)知 ,且 ,基本事件空间包含的基本事件有:
(465,35)、(466,34)、(467,33)、……(475,25)共11个 …………… (11分)
若测试不能通过,则77+90+z>200,即z>33
事件A包含的基本事件有:((465,35)、(466,34)共2个
…………………(13分)
故不能通过测试的概率为 …………………(14分)
科目:高中数学 来源: 题型:
(本小题共14分)
如图,四棱锥的底面是正方形,,点E在棱PB上。
(Ⅰ)求证:平面;
(Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009北京理)(本小题共14分)
已知双曲线的离心率为,右准线方程为
(Ⅰ)求双曲线的方程;
(Ⅱ)设直线是圆上动点处的切线,与双曲线交
于不同的两点,证明的大小为定值.
查看答案和解析>>
科目:高中数学 来源:2013届度广东省高二上学期11月月考理科数学试卷 题型:解答题
(本小题共14分)在四棱锥P-ABCD中,底面ABCD是正方形,侧棱PD底面ABCD,PD=DC,点E是PC的中点,作EFPB交PB于点F
⑴求证:PA//平面EDB
⑵求证:PB平面EFD
⑶求二面角C-PB-D的大小
查看答案和解析>>
科目:高中数学 来源:2010年北京市崇文区高三下学期二模数学(文)试题 题型:解答题
(本小题共14分)
正方体的棱长为,是与的交点,为的中点.
(Ⅰ)求证:直线∥平面;
(Ⅱ)求证:平面;
(Ⅲ)求三棱锥的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com