【题目】如图所示,在四棱锥中,底面为正方形.且,,.
(1)证明:平面;
(2)求二面角的余弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)由题意,因为底面为正方形,利用勾股定理,证得,,再结合线面垂直的判定定理,即可求解;
(2)分别以,,为x,y,z轴的正方向建立空间直角坐标系,分别求得平面和平面的一个法向量,利用向量的夹角公式,即可求解.
(1)由题意,因为底面为正方形,且,,,
所以,,
所以,.
又,平面,平面,
所以平面.
(2)由(1)知平面,又因为底面为正方形,
所以分别以,,为x,y,z轴的正方向建立如图所示的空间直角坐标系,
则,,,,,
所以,,,
设平面的一个法向量为,
则,即,即,
令,所以.
同理可求得平面的一个法向量,
所以.
又二面角的平面角为钝角,
故二面角的余弦值为.
科目:高中数学 来源: 题型:
【题目】如图1,在梯形ABCD中,,,,过A,B分别作CD的垂线,垂足分别为E,F,已知,,将梯形ABCD沿AE,BF同侧折起,使得平面平面ABFE,平面平面BCF,得到图2.
(1)证明:平面ACD;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示是一个上下底面均是边长为2的正三角形的直三棱柱,且该直三棱柱的高为4,D为AB的中点,E为CC1的中点.
(1)求DE与平面ABC夹角的正弦值;
(2)求二面角A﹣A1D﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为(),M为该曲线上的任意一点.
(1)当时,求M点的极坐标;
(2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,短轴长为.
(1)求椭圆的标准方程;
(2)若椭圆的左焦点为,过点的直线与椭圆交于两点,则在轴上是否存在一个定点使得直线的斜率互为相反数?若存在,求出定点的坐标;若不存在,也请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了坚决打赢新冠状病毒的攻坚战,阻击战,某小区对小区内的名居民进行模排,各年龄段男、女生人数如下表.已知在小区的居民中随机抽取名,抽到岁~岁女居民的概率是.现用分层抽样的方法在全小区抽取名居民,则应在岁以上抽取的女居民人数为( )
岁—岁 | 岁—岁 | 岁以上 | |
女生 | |||
男生 |
A.B.C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com