【题目】已知抛物线,且抛物线在点处的切线斜率为,直线与抛物线交于两点(点在点左侧),且直线垂直于直线.
(1)求证:直线过定点,并求出定点坐标;
(2)如图,直线交轴于点,直线交轴于点,求的最大值.
科目:高中数学 来源: 题型:
【题目】嫦娥四号任务经过探月工程重大专项领导小组审议,通过并且正式开始实施,如图所示.假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点变轨进入以月球球心为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在点第二次变轨进入仍以为一个焦点的椭圆轨道Ⅱ绕月飞行.若用和分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用和分别表示椭圆轨道Ⅰ和Ⅱ的长轴长,则下列关系中正确的是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E: 经过点P(2,1),且离心率为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足,直线PM、PN分别交椭圆于A,B.探求直线AB是否过定点,如果经过定点请求出定点的坐标,如果不经过定点,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年10月20日,第六届世界互联网大会发布了15项“世界互联网领先科技成果”,其中有5项成果均属于芯片领域,分别为华为高性能服务器芯片“鲲鹏920”、清华大学“面向通用人工智能的异构融合天机芯片”、“特斯拉全自动驾驶芯片”、寒武纪云端AI芯片、“思元270”、赛灵思“Versal自适应计算加速平台”.现有3名学生从这15项“世界互联网领先科技成果”中分别任选1项进行了解,且学生之间的选择互不影响,则至少有1名学生选择“芯片领域”的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某果园今年的脐橙丰收了,果园准备利用互联网销售.为了更好的销售,现随机摘下了个脐橙进行测重,其质量分布在区间内(单位:克),统计质量的数据作出频率分布直方图如下图所示:
(1)按分层抽样的方法从质量落在,的脐橙中随机抽取个,再从这个脐橙中随机抽个,求这个脐橙质量都不小于克的概率;
(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该果园的脐橙树上大约还有个脐橙待出售,某电商提出两种收购方案:甲:所有脐橙均以元/千克收购;乙:低于克的脐橙以元/个收购,高于或等于克的以元/个收购.请通过计算为该果园选择收益最好的方案.
(参考数据:)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为.
求曲线C的直角坐标方程与直线l的极坐标方程;
Ⅱ若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列的奇数项是公差为的等差数列,偶数项是公差为的等差数列, 是数列的前项和,
(1)若,求;
(2)已知,且对任意的,有恒成立,求证:数列是等差数列;
(3)若,且存在正整数,使得,求当最大时,数列的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆柱内有一个三棱锥,为圆柱的一条母线,,为下底面圆的直径,,.
(1)在圆柱的上底面圆内是否存在一点,使得平面?证明你的结论.
(2)设点为棱的中点,,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P—ABCD中,底面ABCD是矩形,PA⊥平面ABCD,AB=2,AD=AP=3,点M是棱PD的中点.
(1)求二面角M—AC—D的余弦值;
(2)点N是棱PC上的点,已知直线MN与平面ABCD所成角的正弦值为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com