【题目】设{an}是各项都为整数的等差数列,其前n项和为,是等比数列,且,,,.
(1)求数列,的通项公式;
(2)设cn=log2b1+log2b2+log2b3+…+log2bn, .
(i)求Tn;
(ii)求证:2.
【答案】(1),,(2)(i)n3(ii)证明见解析;
【解析】
(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,运用等差数列和等比数列的通项公式,解方程可得公差和公比,即可得到所求通项公式;
(2)(i)运用对数的运算性质和等差数列的求和公式可得,an2﹣n﹣1+2i,再由数列的分组求和,结合等差数列的求和公式,计算可得所求和;
(ii)推得,再由数列的裂项相消求和,结合不等式的性质,即可得证.
解:(1)设等差数列{an}的公差为d,等比数列{bn}的公比为q,由,,,可得,
解得d=2,q=2或d,q=5,
由于{an}是各项都为整数的等差数列,所以d=2,q=2,
从而,,;
(2)(i)∵log2bn=log22n﹣1=n﹣1,
∴cn=0+1+2+…+(n﹣1)n(n﹣1),
∴a2(i)﹣1=n2﹣n﹣1+2i,
∴Tn=(n2﹣n﹣1+2)+(n2﹣n﹣1+4)+…+(n2﹣n﹣1+2n)
=n(n2﹣n﹣1)+(2+4+…+2n)=n(n2﹣n﹣1)+n(n+1)=n3;
(ii)证明:
,
而,
∴,
∴
=1,
由于0,
可得12.
则.
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,过F的直线交抛物线C于,两点.
(Ⅰ)当时,求的值;
(Ⅱ)过点A作抛物线准线的垂线,垂足为E,过点B作EF的垂线,交抛物线于另一点D,求面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知椭圆经过,且右焦点坐标为.
(1)求椭圆的标准方程;
(2)设A,B为椭圆的左,右顶点,C为椭圆的上顶点,P为椭圆上任意一点(异于A,B两点),直线AC与直线BP相交于点M,直线BC与直线AP相交于点N,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是椭圆:上一点,以点及椭圆的左、右焦点,为顶点的三角形面积为.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)过作斜率存在且互相垂直的直线,,是与两交点的中点,是与两交点的中点,求△面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学高一、高二、高三年级的学生人数之比依次为6:5:7,防疫站欲对该校学生进行身体健康调查,用分层抽样的方法从该校高中三个年级的学生中抽取容量为n的样本,样本中高三年级的学生有21人,则n等于( )
A.35B.45C.54D.63
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),在以原点O为极点,x的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为
(1)求曲线的普通方程和直线的直角坐标方程;
(2)设直线与x轴,y轴分别交于A,B两点,点P是曲线上任意一点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】分形理论是当今世界十分风靡和活跃的新理论、新学科.其中把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象.图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已.谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,其构造方法如下:取一个实心的等边三角形(如图1),沿三边的中点连线,将它分成四个小三角形,挖去中间的那一个小三角形(如图2),对其余三个小三角形重复上述过程(如图3).若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c均为正数,设函数f(x)=|x﹣b|﹣|x+c|+a,x∈R.
(1)若a=2b=2c=2,求不等式f(x)<3的解集;
(2)若函数f(x)的最大值为1,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题14分)在平面直角坐标系中,曲线C1的参数方程为 (a>b>0, 为参数),以Ο为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,已知曲线C1上的点对应的参数.与曲线C2交于点.
(1)求曲线C1,C2的直角坐标方程;
(2),是曲线C1上的两点,求 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com