精英家教网 > 高中数学 > 题目详情
8.解下列关于x的不等式:
(1)$(\frac{1}{3})^{{x}^{2}-2x}>1$;
(2)log2$\sqrt{x}+lo{g}_{\sqrt{2}}(2x)<\frac{23}{4}$.

分析 (1)化为同底数,然后利用指数式的单调性化为一元二次不等式求解;
(2)利用对数的运算性质变形,化为同底数,再由对数的运算性质得答案.

解答 解:(1)由$(\frac{1}{3})^{{x}^{2}-2x}>1$=$(\frac{1}{3})^{0}$,得x2-2x<0,解得0<x<2,
∴不等式$(\frac{1}{3})^{{x}^{2}-2x}>1$的解集为(0,2);
(2)由log2$\sqrt{x}+lo{g}_{\sqrt{2}}(2x)<\frac{23}{4}$,得$\frac{1}{2}lo{g}_{2}x+2(1+lo{g}_{2}x)<\frac{23}{4}$,
即$\frac{5}{2}lo{g}_{2}x<\frac{15}{4}$,解得0$<x<2\sqrt{2}$,
∴不等式log2$\sqrt{x}+lo{g}_{\sqrt{2}}(2x)<\frac{23}{4}$的解集为(0,$2\sqrt{2}$).

点评 本题考查指数不等式和对数不等式的解法,考查了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$⊥$\overrightarrow{b}$,|$\overrightarrow{a}$+$\overrightarrow{b}$|=t|$\overrightarrow{a}$|,若$\overrightarrow{a}$+$\overrightarrow{b}$与$\overrightarrow{a}$-$\overrightarrow{b}$的夹角为$\frac{2π}{3}$°,则t的值为(  )
A.1B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③{0,1,2}={2,0,1};④0∈∅;⑤A∩∅=A,正确的个数有2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}为等差数列,a1=2,其前n和为Sn,数列{bn}为等比数列,且${a_1}{b_1}+{a_2}{b_2}+{a_3}{b_3}+…+{a_n}{b_n}=(n-1)•{2^{n+2}}+4$对任意的n∈N*恒成立.
(1)求数列{an}、{bn}的通项公式;
(2)是否存在p,q∈N*,使得$2{({a_p})^5}-{b_q}=2016$成立,若存在,求出所有满足条件的p,q;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=$(\frac{1}{2})^{{x}^{2}-1}$的单调递增区间为(  )
A.(-∞,0]B.[0,+∞)C.(-1,+∞)D.(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点M(0,-2),点N在直线x-y-1=0上,若直线MN垂直于直线x+2y-3=0,则N点的坐标是(  )
A.(-2,-3)B.(1,0)C.(2,3)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)的定义域为D内的某个区间I上是增函数,且F(x)=$\frac{f(x)}{x}$在I上也是增函数,则称y=f(x)是I上的“完美函数”,已知g(x)=ex+x-lnx+1,若函数g(x)是区间[$\frac{m}{2}$,+∞)上的“完美函数”,则正整数m的最小值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若对数函数f(x)的图象过点(9,2),则f(3)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列函数的定义域:
(1)y=5${\;}^{\sqrt{x-1}}$;
(2)y=$\sqrt{(\frac{1}{5})^{x}-25}$;
(3)y=$\frac{1}{1-{3}^{x}}$;
(4)y=$\frac{\sqrt{16-{2}^{x}}}{x+4}$.

查看答案和解析>>

同步练习册答案