精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w为常数且 <w<1),函数f(x)的图象关于直线x=π对称. (I)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1,f( A)= .求△ABC面积的最大值.

【答案】解:(I)f(x)= cos2ωx﹣[ cos(2ωx﹣ )]= cos(2ωx﹣ )﹣ cos2ωx=﹣ cos2ωx+ sin2ωx= sin(2ωx﹣ ). 令2ωx﹣ = +kπ,解得x= .∴f(x)的对称轴为x=
=π解得ω= .∵ <w<1,∴当k=1时,ω=
∴f(x)= sin( x﹣ ).
∴f(x)的最小正周期T=
(Ⅱ)∵f( )= sin(A﹣ )= ,∴sin(A﹣ )= .∴A=
由余弦定理得cosA= = = .∴b2+c2=bc+1≥2bc,∴bc≤1.
∴SABC= =
∴△ABC面积的最大值是
【解析】(1)化简f(x),根据对称轴求出ω,得出f(x)的解析式,利用周期公式计算周期;(2)由f( A)= 解出A,利用余弦定理和基本不等式得出bc的最大值,代入面积公式得出面积的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知Sn表示数列{an}的前n项和,若对任意的n∈N*满足an1ana2 , 且a3=2,则S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】α、β是两个平面,mn是两条直线,有下列四个命题:
①如果mnmαnβ , 那么αβ.
②如果mαnα , 那么mn.
③如果αβm α , 那么mβ.
④如果mnαβ , 那么mα所成的角和nβ所成的角相等.
其中正确的命题有.(填写所有正确命题的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,若sinC=( cosA+sinA)cosB,则(
A.B=
B.2b=a+c
C.△ABC是直角三角形
D.a2=b2+c2或2B=A+C

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos =
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin cos ﹣sin )+ ,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,圆C的参数方程 (φ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求圆C的极坐标方程;
(2)直线l的极坐标方程是2ρsin(θ+ )=3 ,射线OM:θ= 与圆C的交点为O、P,与直线l的交点为Q,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1=1,an﹣an+1=anan+1 , n∈N*
(1)求数列{an}的通项公式;
(2)Sn为{an}的前n项和,bn=S2n﹣Sn , 求bn的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】极坐标系与直角坐标系xOy取相同的长度单位,以原点O为极点,以x轴正半轴为极轴.已知直线l的参数方程为 为参数).曲线C的极坐标方程为
(1)求直线l的倾斜角和曲线C的直角坐标方程;
(2)设直线C与曲线C交于A,B两点,与x轴的交点为M,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E为棱AD的中点,异面直线PA与CD所成的角为90°.
(1)在平面PAB内找一点M,使得直线CM∥平面PBE,并说明理由;
(2)若二面角P﹣CD﹣A的大小为45°,求二面角P﹣CE﹣B的余弦值.

查看答案和解析>>

同步练习册答案