精英家教网 > 高中数学 > 题目详情
17.已知a,b∈R+,a+b=1,x1,x2∈R+,求证:(ax1+bx2)(bx1+ax2)≥x1x2

分析 通过乘积展开,利用基本不等式变形、整理即得结论.

解答 证明:依题意,(ax1+bx2)(bx1+ax2
=(ax1+bx2)(ax2+bx1
=(a2+b2)x1x2+ab(${{x}_{1}}^{2}$+${{x}_{2}}^{2}$)
≥(a2+b2)x1x2+2abx1x2
=$(a\sqrt{{x}_{1}{x}_{2}}+b\sqrt{{x}_{1}{x}_{2}})^{2}$
=(a+b)2x1x2
=x1x2

点评 本题考查基本不等式等基础知识,考查运算求解能力与转化思想,注意解题方法的积累,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.证明不等式:1+$\frac{3}{5}$+$\frac{7}{9}$+…+$\frac{2^n-1}{{3}^{n}-{2}^{n}}$<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=ax2+bx+c经过坐标原点,当x=$\frac{1}{3}$时有最小值-$\frac{1}{3}$,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求函数f(x)的解析式;
(2)求数列{an}的通项公式;
(3)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,Tn是数列{bn}的前n项和,求使得Tn<$\frac{m}{20}$对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.掷三颗骰子,求所得点数的最大值为最小值2倍的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知等边△ABC的边长为2,M为AC中点,N为BC中点,$\overrightarrow{AN}$$•\overrightarrow{BM}$=-$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sinx+x3.数列{an}的前n项和为Sn=pn2+qn,p,q为常数,且an∈(-$\frac{π}{2}$,$\frac{π}{2}$),若f(a10)<0,则f(a1)+f(a2)+…+f(a18)+f(a19)取值(  )
A.恒为正数B.恒为负数C.恒为零D.可正可负

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设P=e0.3,Q=ln0.2,R=sin$\frac{15π}{7}$,则(  )
A.P<R<QB.R<Q<PC.R<P<QD.Q<R<P

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.根据下表,绘制网络图.
工作代码紧前工作紧后工作工期/时
ACG2
BD3
CA、D、F4
DCB2
EF4
FCE2
GA5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在坐标平面内,对任意非零实数m,不在抛物线y=mx2+(2m+1)x-(3m+2)上且在直线y=-x+1上的点的坐标为(1,0),(-3,4),($\frac{3}{2}$,-$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案