精英家教网 > 高中数学 > 题目详情

中,分别是角的对边,且.
(1)求角的大小;
(2)若,求的面积.

(1),(2).

解析试题分析:(1)由正弦定理可将原等式转化为,展开可化为,所以,在三角形内,.(2)由,根据余弦定理,可化为
那么.
试题解析:解:(1)由正弦定理得 2分

将上式代入已知  4分

 

 ∵B为三角形的内角,∴. 6分
(2)将代入定理得  8分
,     9分
 
.   12分
考点:本题主要考查正余弦定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在△中,已知,向量,且
(1)求的值;
(2)若点在边上,且,求△的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的三内角所对的边长分别为,且,A=
(1)求三角形ABC的面积;
(2)求的值及中内角B,C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别为.已知.
(1)求的大小;
(2)如果,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求函数的最小正周期;
(2)在中,若的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角所对的边分别是,且满足
(1)求角的大小;
(2)求的最大值,并求取得最大值时角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知甲船正在大海上航行,当它位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救,甲船立即以10海里/小时的速度匀速前往救援,同时把消息告知在甲船的南偏西,相距10海里C处的乙船,乙船当即决定匀速前往救援,并且与甲船同时到达。(供参考使用:).
(1)试问乙船航行速度的大小;
(2)试问乙船航行的方向(试用方位角表示,如北偏东…度).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

的内角所对的边分别为,且有
(1)求的值;
(2)若上一点.且,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,A、B、C所对的边分别是a、b、c,且bcosB是acosC、ccosA的等差中项.
(1)求B的大小;
(2)若a+c=,b=2,求△ABC的面积.

查看答案和解析>>

同步练习册答案