精英家教网 > 高中数学 > 题目详情
(2012•许昌三模)如图,在四面体ABCD中,二面角A-CD-B的平面角为60°,AC⊥CD,BD⊥CD,且AC=CD=2BD,点E、F分别是AD、BC的中点.
(Ⅰ)求证:EF⊥平面BCD;
(Ⅱ)求二面角A-BD-C的余弦值.
分析:(Ⅰ)取DC的中点G,连接EG,FG,证明CD⊥平面EFG,可得∠EGF为二面角A-CD-B的平面角,在△EGF中,由余弦定理得EF=
3
FG,从而可得∠EFG=90°,进而可知EF⊥平面BCD;
(Ⅱ)建立空间直角坐标系,用坐标表示点与向量,求出平面BCD的法向量
m
=(0,0,1),平面ABD的法向量
n
=(0,
3
2
,1)
,利用向量的夹角公式,即可求二面角A-BD-C的余弦值.
解答:(Ⅰ)证明:取DC的中点G,连接EG,FG.
∵点E、F分别是AD、BC的中点.
∴EG,FG分别为△ACD,△BCD的中位线.
故EG⊥CD,FG⊥CD
∵EG∩FG=G.
∴CD⊥平面EFG
∵EF?平面EFG
∴CD⊥EF
可知∠EGF为二面角A-CD-B的平面角,∠EGF=60°.
在△EGF中,EG=2FG,∠EGF=60°,由余弦定理得EF=
3
FG,
又由正弦定理得∠EFG=90°
∵GF∩CD=G,GF?面BCD
∴EF⊥平面BCD;
(Ⅱ)解:以C为原点,平面BCD为xoy平面,CD为y轴建立空间直角坐标系.
设BD=1,则C(0,0,0),B(1,2,0),D(0,2,0),A(1,0,
3

AB
=(0,2,-
3
)
AD
=(-1,2,-
3
)

平面BCD的法向量
m
=(0,0,1)
设平面ABD的法向量
n
=(x,y,z),则
AD
n
=0,
AB
n
=0,
-x+2y-
3
z=0
2y-
3
z=0
,∴x=0,y=
3
2
z

令z=1,
n
=(0,
3
2
,1)

cos<
m
n
>=
m
n
|
m
||
n
|
=
2
7
7

∴二面角A-BD-C的余弦值为
2
7
7
点评:本题考查线面垂直,考查面面角,解题的关键是掌握线面垂直的判定方法,正确运用向量法解决面面角问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•许昌三模)已知数列{an}中,a1=a2=1,且an+2-an=1,则数列{an}的前100项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)已知A,B是圆x2+y2=2上两动点,O是坐标原点,且∠AOB=120°,以A,B为切点的圆的两条切线交于点P,则点P的轨迹方程为
x2+y2=8
x2+y2=8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)如图,在RT△ABC中,D是斜边AB上一点,且AC=AD,记∠BCD=β,∠ABC=α.
(Ⅰ)求sinα-cos2β的值;
(Ⅱ)若BC=
3
CD,求∠CAB的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)如图,在四面体ABCD中,二面角A-CD-B的平面角为60°,AC⊥CD,BD⊥CD,且AC=CD=2BD,点E、F分别是AD、BC的中点.
(Ⅰ)求作平面α,使EF?α,且AC∥平面α,BD∥平面α;
(Ⅱ)求证:EF⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•许昌三模)已知函数f(x)=ex,若函数g(x)满足f(x)≥g(x)恒成立,则称g(x)为函数f(x)的下界函数.
(Ⅰ)若函数g(x)-kx是f(x)的下界函数,求实数k的取值范围;
(Ⅱ)证明:对于?m≤2,,函数h(x)=m+lnx都是f(x)的下界函数.

查看答案和解析>>

同步练习册答案