精英家教网 > 高中数学 > 题目详情

【题目】某房产中介公司201791日正式开业,现对其每个月的二手房成交量进行统计,表示开业第个月的二手房成交量,得到统计表格如下:

(1)统计中常用相关系数来衡量两个变量之间线性关系的强弱.统计学认为,对于变量,如果,那么相关性很强;如果,那么相关性一般;如果,那么相关性较弱.通过散点图初步分析可用线性回归模型拟合的关系.计算的相关系数,并回答是否可以认为两个变量具有很强的线性相关关系(计算结果精确到0.01)

(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程(计算结果精确到0.01),并预测该房产中介公司20186月份的二手房成交量(计算结果四舍五入取整数).

(3)该房产中介为增加业绩,决定针对二手房成交客户开展抽奖活动.若抽中“一等奖”获6千元奖金;抽中“二等奖”获3千元奖金;抽中“祝您平安”,则没有奖金.已知一次抽奖活动中获得“一等奖”的概率为,获得“二等奖”的概率为,现有甲、乙两个客户参与抽奖活动,假设他们是否中奖相互独立,求此二人所获奖金总额(千元)的分布列及数学期望.

参考数据:.

参考公式:

【答案】(1)相关性很强,(2)(3)见解析

【解析】分析:(1)根据相关系式公式,即可求解相关系数,并作出判断;

(2)计算回归系数得出回归方程,再根据回归方程估计成交量,即可作答;

(3)根据相互独立事件的概率计算随机变量的各种可能取值对应的概率,从而得出分布列,求解数学期望

详解:(1)依题意:

.

因为,所以变量线性相关性很强.

(2)

关于的线性回归方程为.

所以预计2018年6月份的二手房成交量为.

(3)二人所获奖金总额的所有可能取值有千元.

.

所以,奖金总额的分布列如下表:

0

3

6

9

12

千元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某小组为了研究昼夜温差对一种稻谷种子发芽情况的影响,他们分别记录了4月1日至4月5日的每天星夜温差与实验室每天每100颗种子的发芽数,得到如下资料:

日期

4月1日

4月2日

4月3日

4月4日

4月5日

温差

9

10

11

8

12

发芽数(颗)

38

30

24

41

17

利用散点图,可知线性相关。

(1)求出关于的线性回归方程,若4月6日星夜温差,请根据你求得的线性同归方程预测4月6日这一天实验室每100颗种子中发芽颗数;

(2)若从4月1日 4月5日的五组实验数据中选取2组数据,求这两组恰好是不相邻两天数据的概率.

(公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求曲线在点处的切线方程;

(2)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几个命题中,假命题是( )

A. “若,则”的否命题

B. ,函数在定义域内单调递增”的否定

C. 是函数的一个周期”或“是函数的一个周期”

D. ”是“”的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆上每一点的横坐标保持不变,纵坐标变为原来的倍,得曲线.

写出的参数方程;

设直线的交点为,以坐标原点为极点,轴正半轴为极轴建立极坐标系,求过线段的中点且与垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是各项均为正数的等比数列,.

1)求的通项公式;

2)设,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若一条直线与一个平面垂直,则称此直线与平面构成一个“正交线面对”.那么在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( )

A. 48 B. 36 C. 24 D. 18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】通过随机询问110名性别不同的大学生是否爱好体育,得到表:

参照附表,得到的正确结论是  

附:由公式算得:

附表:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

1.323

2.702

2.706

3.841

5.024

6.635

7.879

A. 以上的把握认为“爱好体育运动与性别有关”

B. 以上的把握认为“爱好体育运动与性别无关”

C. 在犯错误的概率不超过的前提下,认为“爱好体育运动与性别有关”

D. 在犯错误的概率不超过的前提下,认为“爱好体育运动与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4AB=2,∠BAD=60°,EMN分别是BCBB1A1D的中点.

1)证明:MN∥平面C1DE

2)求AM与平面A1MD所成角的正弦值.

查看答案和解析>>

同步练习册答案