精英家教网 > 高中数学 > 题目详情
20.已知平面区域Ω:$\left\{{\begin{array}{l}{3x+4y-18≤0}\\{x≥2}\\{y≥0}\end{array}}$,夹在两条斜率为-$\frac{3}{4}$的平行直线之间,且这两条平行直线间的最短距离为m.若点P(x,y)∈Ω,且mx-y的最小值为p,$\frac{y}{x+m}$的最大值为q,则pq等于(  )
A.$\frac{27}{22}$B.$\frac{2}{5}$C.$\frac{27}{25}$D.0

分析 由约束条件作出可行域,结合题意求出m,利用线性规划知识求得p,再由两点求斜率求出q,则答案可求.

解答 解:由约束条件作出可行域如图,
∵平面区域Ω夹在两条斜率为-$\frac{3}{4}$的平行直线之间,且两条平行直线间的最短距离为m,
则m=$\frac{|3×2-18|}{5}=\frac{12}{5}$.
令z=mx-y=$\frac{12}{5}x-y$,则y=$\frac{12}{5}x-z$,
由图可知,当直线y=$\frac{12}{5}x-z$过B(2,3)时,直线在y轴上的截距最大,z有最小值为p=$\frac{9}{5}$,
$\frac{y}{x+m}$=$\frac{y}{x+\frac{12}{5}}$的几何意义为可行域内的动点与定点D($-\frac{12}{5},0$)连线的斜率,其最大值q=$\frac{3}{2+\frac{12}{5}}=\frac{15}{22}$.
∴pq=$\frac{9}{5}×\frac{15}{22}=\frac{27}{22}$.
故选:A.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)是偶函数,且f(x)在[0,+∞)上的解析式是f(x)=2x+1,则f(x)在(-∞,0)上的解析式为f(x)=-2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={x|x2-x-6>0},则下列属于集合A的元素是(  )
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线y=ax2上一点P(1,2)到它的准线的距离为$\frac{17}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合P={x|1≤2x<4},Q={1,2,3},则P∩Q(  )
A.{1}B.{1,2}C.{2,3}D.{1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{{∫}_{x}^{0}(2t+2-{e}^{t})dt,x≤0}\end{array}\right.$,则函数h(x)=f(x)+1有2个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知2sinxtanx=3,(-π<x<0),则x=(  )
A.$-\frac{π}{3}$B.$-\frac{π}{6}$C.$-\frac{5π}{6}$D.$-\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知实数x满足9x-4×3x+1+27≤0且f(x)=(log2$\frac{x}{2}$)(log${\;}_{\sqrt{2}}$$\frac{\sqrt{x}}{2}$).
(Ⅰ)求实数x的取值范围;
(Ⅱ)求f(x)的最大值和最小值,并求此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.函数f(x)=x3-ax在(1,3)上存在单调增区间,则a的取值范围是(-∞,27),函数f(x)=x3-ax在(1,3)上单调增,则a的取值范围是(-∞,3].

查看答案和解析>>

同步练习册答案