精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A、B、C的对边分别为a、b、c,若
cosA-2cosC
cosB
=
2c-a
b
,则
sinC
sinA
=(  )
A、
1
2
B、1
C、
3
2
D、2
考点:正弦定理,余弦定理
专题:解三角形
分析:由条件利用正弦定理可得sinBcosA+cosBsinA=2(sinBcosC+cosBsinC),再利用诱导公式、两角和的正弦公式求得
sinC
sinA
=的值.
解答: 解:在△ABC中,由
cosA-2cosC
cosB
=
2c-a
b
利用正弦定理可得
cosA-2cosC
cosB
=
2sinC-sinA
sinB

∴sinBcosA-2cosCsinB=2sinCcosB-sinAcosB,
∴sinBcosA+cosBsinA=2(sinBcosC+cosBsinC),
∴sin(B+A)=2sin(B+C),即 sinC=2sinA,则
sinC
sinA
=2,
故选:D.
点评:本题主要考查正弦定理、诱导公式、两角和的正弦公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列命题:
①若函数f(x)=asinx+cosx的一个对称中心是(
π
6
,0),则a的值为-
3

②函数f(x)=cos(2x+
π
2
)在区间[0,
π
2
]上单调递减;
③已知函数f(x)=2sin(2x+φ)(-π<φ<π),若f(
π
6
)≤f(x)对任意x∈R恒成立,则φ=-
6

④函数f(x)=tan|x|既是偶函数又是周期函数;
⑤函数f(x)=sin(2x-
π
3
)+1的最小正周期为π.
其中所有正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一水渠的横截面如图所示,它的横截面曲线是抛物线形,AB宽2m,渠OC深为1.5m,水面EF距AB为0.5m.
(1)求截面图中水面宽度;
(2)如把此水渠改造成横截面是等腰梯形,要求渠深不变,不准往回填土,只准挖土,试求截面梯形的下边长为多大时,才能使所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
a
|=1,|
b
|=2,向量
a
b
的夹角为60°,则|
a+b
|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列说法:
①不等于0的所有偶数可以组成一个集合;
②高一(1)班的所有高个子同学可以组成一个集合;
③{1,2,3,4}与{4,2,3,1}是不同的集合;
④实数中不是有理数的所有数能构成一个集合.
其中正确的个数是(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2
sin(x-
π
4
),f′(x)是f(x)的导函数.
(1)求函数F(x)=[f′(x)]2-f(x)f′(x)的最小值和相应的x值.
(2)若f(x)=2f′(x),求
3-cos2x
cos2x-sinxcosx
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

?x∈R,不等式-x2+2ax-(a+2)<0恒成立,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx-
3
2
(a>0),且在[0,
π
2
]上的最大值为
π-3
2

(Ⅰ)求函数f(x)的解析式;
(Ⅱ)判断函数f(x)在(0,π)内零点个数,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和为Sn,首项为a1,且
1
2
,an,Sn成等差数列.
(1)求数列{an}的通项公式;
(2)数列{bn}满足bn=(log2a2n+1)×(log2a2n+3),求证:
1
b1
+
1
b2
+
1
b3
+…+
1
bn
1
2

查看答案和解析>>

同步练习册答案