精英家教网 > 高中数学 > 题目详情

对于在区间 [ m,n ] 上有意义的两个函数,如果对任意,均有,则称在 [ m,n ] 上是友好的,否则称在 [ m,n ]是不友好的.现有两个函数(a > 0且),给定区间

(1)若在给定区间上都有意义,求a的取值范围;

(2)讨论在给定区间上是否友好.

 

【答案】

(1) ;(2) 当时,上是友好的,当时,上是不友好的

【解析】

试题分析:(1)函数f(x)与g(x)在区间[a+2,a+3]上有意义,必须满足(2)假设存在实数a,使得函数f(x)与g(x)在区间[a+2,a+3]上是“友好”的,

则|f(x)-g(x)|=|loga(x2-4ax+3a2)|?|loga(x2-4ax+3a2)|≤1即-1≤loga(x2-4ax+3a2)≤1(*),因为a∈(0,1)?2a∈(0,2),而[a+2,a+3]在x=2a的右侧,

所以函数g(x)=loga(x2-4ax+3a2)在区间[a+2,a+3]上为减函数,从而,于是不等式(*)成立的充要条件是,因此,当时,上是友好的; 当时,上是不友好的

考点:本题考查了函数的定义域及单调性

点评:此类问题要求学生熟练掌握函数单调性的判断与证明,以及新定义的运用,属于中档题.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

对于在区间[a,b]上有意义的两个函数m(x)与n(x),如果对于区间[a,b]中的任意x均有|m(x)-n(x)|≤1,则称m(x)与n(x)在[a,b]上是“密切函数”,[a,b]称为“密切区间”,若函数m(x)=x2-3x+4与n(x)=2x-3在区间[a,b]上是“密切函数”,则b-a的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=asinx-x+b(a、b均为正的常数).
(1)求证函数f(x)在(0,a+b]内至少有一个零点;
(2)设函数f(x)在x=
π
3
处有极值
①对于一切x∈[0,
π
2
]
,不等式f(x)>sinx+cosx总成立,求b的取值范围;
②若函数f(x)在区间(
m-1
3
π,
2m-1
3
π)
上单调递增,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•东城区三模)对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对于任意x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的.若函数y=x2-2x+3与函数y=3x-2在区间[m,n]上是接近的,给出如下区间①[1,4]②[1,3]③[1,2]∪[3,4]④[1,
32
]∪[3,4]
,则区间[m,n]可以是
③、④
③、④
.(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对于任意的x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,若函数f(x)=x2-2x+3与g(x)=3x-2在区间[m,n]上是接近的,给出如下区间:(1)[1,4](2)[1,2](3)[1,2]∪[3,4](4)[1,
32
]∪[3,4]
,则区间[m,n]可以是
(2)(3)(4)
(2)(3)(4)
(把你认为正确的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于在区间[m,n]上有意义的两个函数f(x)与g(x),如果对任意的x∈[m,n],均有|f(x)-g(x)|≤1,则称f(x)与g(x)在[m,n]上是接近的,否则称f(x)与g(x)在[m,n]上是非接近的.现有两个函数f1(x)=loga(x-2a)与f2(x)=loga
1x-a
,(a>0,且a≠1),给定区间[a+1,a+2]
(1)若f1(x)与f2(x)在区间[a+1,a+2]上都有意义,求a的取值范围;
(2)在(1)的条件下,讨论f1(x)与f2(x)在区间[a+1,a+2]上是否是接近的.

查看答案和解析>>

同步练习册答案