精英家教网 > 高中数学 > 题目详情
设f(x)=x3-
12
x2-2x+5
(Ⅰ)求函数f(x)的单调区间.
(Ⅱ)求极值点与极值.
分析:(I)先求导数fˊ(x)然后在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的区间为单调增区间,fˊ(x)<0的区间为单调减区间.
(II)令导函数等于0求出x的值,根据x的值分区间讨论导函数的正负,进而得到函数的单调区间,得到函数的极大值和极小值.
解答:解:(I)f(x)=x3-
1
2
x2-2x+5,f′(x)=3x2-x-2,
令f′(x)>0即3x2-x-2>0解得x∈(-∞,-
2
3
)∪(1,+∞)
令f′(x)<0即3x2-x-2<0解得x∈(-
2
3
,1),
故函数在(-∞,-
2
3
)
,(1,+∞)上为单调递增区间,在(-
2
3
,1)
上为单调递减区间.
(II)由f′(x)=0,即3x2-x-2=0解得x=-
2
3
或x=1,
当x变化时,f′(x),f(x)的变化如下表:
x (-∞,-
2
3
-
2
3
(-
2
3
,1)
1 (1,+∞)
f′(x) + 0 - 0 +
f(x) 极大值
157
27
极小值
7
2
∴当x=1时,f(x)取得极小值
7
2
,当x=-
2
3
时,f(x)取得极大值
157
27
点评:本题考查了函数的单调性,会利用导函数的正负判断函数的单调性并根据函数的增减性得到函数的极值.利用导数判断函数的单调性的步骤是:(1)确定函数的定义域;(2)求导数fˊ(x);(3)在函数的定义域内解不等式fˊ(x)>0和fˊ(x)<0;(4)确定函数的单调区间.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=x3,等差数列{an}中a3=7,a1+a2+a3=12,记Sn=f(
3an+1
)
,令bn=anSn,数列{
1
bn
}
的前n项和为Tn
(Ⅰ)求{an}的通项公式和Sn
(Ⅱ)求证:Tn
1
3

(Ⅲ)是否存在正整数m,n,且1<m<n,使得T1,Tm,Tn成等比数列?若存在,求出m,n的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、我们可以用以下方法来求方程x3+x-1=0的近似根:设f(x)=x3+x-1,由f(0)=-1<0,f(1)=1>0,可知方程必有一根在区间(0,1)内;再由f(0.5)=-0.375<0,可知方程必有一根在区间(0.5,1)内;依此类推,此方程必有一根所在的区间是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3-ax2-bx-c,x∈[-1,1],记y=|f(x)|的最大值为M.
(Ⅰ)当a=c=0,b=
34
时,求M的值;
(Ⅱ)当a,b,c取遍所有实数时,求M的最小值.
(以下结论可供参考:对于a,b,c,d∈R,有|a+b+c+d|≤|a|+|b|+|c|+|d|,当且仅当a,b,c,d同号时取等号)

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3+x(x∈R),当0≤θ≤
π
2
时,f(misnθ)+f(1-m)>0恒成立,则实数m的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=x3(x∈R),若0≤θ<
π
2
时,f(m•sinθ)+f(2-m)>0恒成立,则实数m的取值范围是(  )

查看答案和解析>>

同步练习册答案