精英家教网 > 高中数学 > 题目详情
已知cosα=
3
5
,则cos2α+sin2α的值为(  )
A、
9
25
B、
18
25
C、
23
25
D、
34
25
分析:由cosα的值,利用同角三角函数间的基本关系求出sin2α的值,原式第一项利用二倍角的余弦函数公式化简合并后,将sin2α的值代入计算即可求出值.
解答:解:∵cosα=
3
5

∴sin2α=1-cos2α=
16
25

则cos2α+sin2α=1-2sin2α+sin2α=1-sin2α=1-
16
25
=
9
25

故选:A.
点评:此题考查了二倍角的余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知cosα=-
3
5
,α∈(
π
2
,π),求cos(
π
4
-α),cos(2α+
π
6
).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cos(π+α)=-
3
5
且α为第四象限角,则sin(-2π+α)=
-
4
5
-
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007广州市水平测试)已知cosθ=
3
5
, θ∈(0, 
π
2
)
,求sinθ及sin(θ+
π
4
)
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
3
5
,0<α<π
,则tan(α+
π
4
)
=
-7
-7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知cosα=
3
5
,cos(α+β)=-
5
13
,α,β
都是锐角,则cosβ=
 

查看答案和解析>>

同步练习册答案