精英家教网 > 高中数学 > 题目详情
2.命题“3mx2+mx+1>0恒成立”则实数m的取值范围为[0,12).

分析 由命题“3mx2+mx+1>0恒成立”得到对任意x∈R不等式3mx2+mx+1>0恒成立.然后分m=0和m≠0求解m的范围,当m≠0时得到关于m的不等式组,求解不等式组后与m=0取并集得答案.

解答 解:命题“3mx2+mx+1>0恒成立”,
即对任意x∈R不等式3mx2+mx+1>0恒成立,
当m=0时,原不等式显然成立;
当m≠0时,需$\left\{\begin{array}{l}{m>0}\\{△{=m}^{2}-12m<0}\end{array}\right.$,
解得:0<m<12,
综上,实数m的取值范围是[0,12).
故答案为:[0,12).

点评 本题考查了函数恒成立问题,考查了分类讨论的数学思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.$\sqrt{3}x+y=0$的倾斜角的大小是120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁UA)∩(∁UB)={7,9}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知0<x<π,且满足$sinx+cosx=\frac{7}{13}$.
求:
(i)sinx•cosx;
(ii)$\frac{5sinx+4cosx}{15sinx-7cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列关系中,正确的个数为(  )
①$\frac{{\sqrt{2}}}{2}∈R$
②0∈N*
③{-5}⊆Z
④∅={∅}.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列几个命题正确的个数是(  )
①方程x2+(a-3)x+a=0有一个正根,一个负根,则a<0;
②函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,但不是奇函数;
③函数f(x+1)的定义域是[-1,3],则f(x2)的定义域是[0,2];
④一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某程序框图如图所示,执行该程序,若输入4,则输出S=(  )
A.10B.17C.19D.36

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知复数$z=1+\sqrt{3}•i$(i为虚数单位),则|z|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=(a-bx3)ex-$\frac{lnx}{x}$,且函数f(x)的图象在点(1,e)处的切线与直线x-(2e+1)y-3=0垂直.
(Ⅰ)求a,b;
(Ⅱ)求证:当x∈(0,1)时,f(x)>2.

查看答案和解析>>

同步练习册答案