精英家教网 > 高中数学 > 题目详情

【题目】如图是根据某行业网站统计的某一年1月到12月(共12个月)的山地自行车销售量(代表1000辆)折线图,其中横轴代表月份,纵轴代表销售量,由折线图提供的数据回答下列问题:

1)在一年中随机取一个月的销售量,估计销售量不足的概率;

2)在一年中随机取连续两个月的销售量,估计这连续两个月销售量递增(如2月到3月递增)的概率;

3)根据折线图,估计年平均销售量在哪两条相邻水平平行线线之间(只写出结果,不要过程)

【答案】123)在这两条水平线之间

【解析】

1)设销售量不足为事件,这一年共有12个月,利用列举法能求出销售量不足的概率.
2)设连续两个月销售量递增为事件,利用列举法能求出这连续两个月销售量递增(如2月到3月递增)的概率.
3)由折线图,估计年平均销售量在这两条水平线之间.

解:(1)设销售量不足为事件

这一年共有12个月,

其中1月,2月,6月,11月共4个的销售量不足

所以.

2)设连续两个月销售量递增为事件

在这一年中随机取连续两个月的销售量,

12月;23月;34月;45月;56月;67月;78月;89月;910月;1011月;1112月共11种取法,

其中23月,34月;45月;67月;78月;89月;

1112月共7种情况的销售量递增,

所以.

3)由折线图,年平均销售量在这两条水平线之间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】过双曲线的左焦点作圆的切线交双曲线的右支于点,且切点为,已知为坐标原点,为线段的中点(点在切点的右侧),若的周长为,则双曲线的渐近线的方程为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知AB是抛物线Cy24x上两点,线段AB的垂直平分线与x轴有唯一的交点Px00).

(1)求证:x02

(2)若直线AB过抛物线C的焦点F,且|AB|10,求|PF|

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年10月份郑州市进行了高三学生的体育学业水平测试,为了考察高中学生的身体素质比情况,现抽取了某校1000名(男生800名,女生200名)学生的测试成绩,根据性别按分层抽样的方法抽取100名进行分析,得到如下统计图表:

男生测试情况:

抽样情况

病残免试

不合格

合格

良好

优秀

人数

5

10

15

47

女生测试情况

抽样情况

病残免试

不合格

合格

良好

优秀

人数

2

3

10

2

1)现从抽取的1000名且测试等级为优秀的学生中随机选出两名学生,求选出的这两名学生恰好是一男一女的概率;

2)若测试等级为良好优秀的学生为体育达人其它等级的学生(含病残免试非体育达人根据以上统计数据填写下面列联表,并回答能否在犯错误的概率不超过0.010的前提下认为是否为体育达人与性别有关?

男性

女性

总计

体育达人

非体育达人

总计

临界值表:

0.10

0.05

0.025

0.010

0.005

2.706

3.841

5.024

6.635

7.879

:( 其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】去年年底,某商业集团公司根据相关评分细则,对其所属25家商业连锁店进行了考核评估.将各连锁店的评估分数按[60,70), [70,80), [80,90), [90,100),分成四组,其频率分布直方图如下图所示,集团公司依据评估得分,将这些连锁店划分为A,B,C,D四个等级,等级评定标准如下表所示.

评估得分

[60,70)

[70,80)

[80,90)

[90,100)

评定等级

D

C

B

A

(1)估计该商业集团各连锁店评估得分的众数和平均数;

(2)从评估分数不小于80分的连锁店中任选2家介绍营销经验,求至少选一家A等级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018131日晚上月全食的过程分为初亏、食既、食甚、生光、复圆五个阶段,月食的初亏发生在1948分,2051分食既,2129分食甚,2207分生光,2311分复圆.月全食伴随有蓝月亮和红月亮,全食阶段的红月亮在食既时刻开始,生光时刻结束.小明准备在19552156之间的某个时刻欣赏月全食,则他等待红月亮的时间不超过30分钟的概率是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)若,函数的极大值为,求实数的值;

(Ⅱ)若对任意的 上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年在印度尼西亚日惹举办的亚洲乒乓球锦标赛男子团体决赛中,中国队与韩国队相遇,中国队男子选手ABCDE依次出场比赛,在以往对战韩国选手的比赛中他们五人获胜的概率分别是0.80.80.80.750.7,并且比赛胜负相互独立.赛会釆用53胜制,先赢3局者获得胜利.

1)在决赛中,中国队以31获胜的概率是多少?

2)求比赛局数的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块半圆形的空地,直径米,政府计划在空地上建一个形状为等腰梯形的花圃,如图所示,其中为圆心,在半圆上,其余为绿化部分,设.

1)记花圃的面积为,求的最大值;

2)若花圃的造价为10/,在花圃的边处铺设具有美化效果的灌溉管道,铺设费用为500/米,两腰不铺设,求满足什么条件时,会使总造价最大.

查看答案和解析>>

同步练习册答案