精英家教网 > 高中数学 > 题目详情

ac2>bc2是a>b成立的


  1. A.
    充分而不必要条件
  2. B.
    充要条件
  3. C.
    必要而不充分条件
  4. D.
    既不充分也不必要条件
A
分析:本题考查不等式的性质,注意c=0时的情况.
解答:由不等式的性质ac2>bc2?a>b,反之c=0时,a>bac2>bc2
故选A
点评:本题考查不等式的性质和充要条件的判断,属基本题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

8、下列结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c∈R,则“ac2<bc2”是“a<b”的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题的有
①③④
①③④
.(只填写真命题的序号)
①若a,b,c∈R,则“ac2>bc2”是“a>b”成立的充分不必要条件;
②当x∈(0,
π
4
)
时,函数y=sinx+
1
sinx
的最小值为2;
③若命题“?p”与命题“p或q”都是真命题,则命题q一定是真命题;
④若命题p:?x∈R,x2+x+1<0,则?p:?x∈R,x2+x+1≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题中
①若a,b,c∈R,则“ac2>bc2”是“a>b”成立的充分不必要条件;
②当x∈(0,
π
4
)时,函数y=sinx+
1
sinx
的最小值为2;
③命题“若|x|>2,则x≥2或x≤-2”的否命题是“若|x|<2,则-2<x<2”;
④函数f(x)=lnx+x-
3
2
在区间(1,2)上有且仅有一个零点.
其中正确命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中,真命题的有
 
.(只填写真命题的序号)
①若a,b,c∈R则“ac2>bc2”是“a>b”成立的充分不必要条件;
②若椭圆
x2
16
+
y2
25
=1
的两个焦点为F1,F2,且弦AB过点F1,则△ABF2的周长为16;
③若命题“?p”与命题“p或q”都是真命题,则命题q一定是真命题;
④若命题p:?x∈R,x2+x+1<0,则?p:?x∈R,x2+x+1≥0.

查看答案和解析>>

同步练习册答案