精英家教网 > 高中数学 > 题目详情
20.已知f(x)=ax2+(b-3)x+3,x∈[a2-2,a]是偶函数,则a+b=(  )
A.1B.2C.3D.4

分析 先由“定义域应关于原点对称”则有,又f(-x)=f(x)恒成立,用待定系数法可求得b.

解答 解:∵定义域应关于原点对称,
故有a2-2=-a,
得a=1或a=-2.
∵x∈[a2-2,a]
∴a2-2<a,
∴a=-2应舍去.
又∵f(-x)=f(x)恒成立,
即:ax2-(b-3)x+3=ax2+(b-3)x+3,
∴b=3.
a+b=4.
故选:D.

点评 本题主要考查函数的奇偶性定义,首先定义域要关于原点对称,二是研讨f(x)与f(-x)的关系,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:
商店名称ABCDE
销售额( x)/千万元35679
利润额( y)/千万元23345
(1)求利润额y与销售额x之间的线性回归方程$\hat y=\hat bx+\hat a$;
(2)若该公司某月的总销售额为40千万元,则它的利润额估计是多少?
参考公式:用最小二乘法求线性回归方程系数公式$\hat b=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\hat a=\overline y-\hat b\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)是定义在R上的奇函数,当x<0时,$f(x)=\frac{{{a^x}-1}}{a^x}$,其中a>0且a≠1.
(1)求f(x)的解析式;
(2)解关于x的不等式-1<f(x-1)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(2x+1)定义域为(3,5),则f(x)定义域为(7,11).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知x∈(0,+∞),观察下列各式:
x+$\frac{1}{x}$≥2,
x+$\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$≥3,
x+$\frac{27}{x^3}=\frac{x}{3}+\frac{x}{3}+\frac{x}{3}+\frac{27}{x^3}$≥4,

类比得:x+$\frac{a}{x^n}≥n+1(n∈{N^*})$,则a=nn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若f(x)=ax3+x+c在[a,b]上是奇函数,则a+b+c+2的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)对于任意的x∈R恒有f(x)<f(x+1),那么(  )
A.f(x)是R上的增函数B.f(x)可能不存在单调的增区间
C.f(x)不可能有单调减区间D.f(x)一定有单调增区间

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,且一个零点是2,则使得f(x)<0的x的取值范围是(  )
A.(-∞,-2]B.(-∞,-2)∪(2,+∞)C.(2,+∞)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有下列4个命题:
①“若x+y=0,则x,y互为相反数”的逆否命题;
②“若a>b,则a2>b2”的逆命题;
③“若x≤-3,则x2-x-6>0”的否命题;
④“若ab是无理数,则a,b是无理数”的逆命题.
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案