精英家教网 > 高中数学 > 题目详情
19.函数f(x)=ax3-x在(-∞,+∞)内是减函数,则实数a的取值范围是(  )
A.a≤0B.a<1C.a<2D.a<$\frac{1}{3}$

分析 根据f′(x)=3ax2-1<0恒成立,求得实数a的取值范围.

解答 解:函数f(x)=ax3-x在(-∞,+∞)内是减函数,故f′(x)=3ax2-1<0恒成立,
故有3a≤0,求得a≤0,
故选:A.

点评 本题主要考查函数的单调性和导数的关系,利用导数研究函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.若椭圆$\frac{x^2}{k+8}+\frac{y^2}{9}=1$的离心率$e=\frac{1}{3}$,则k的值为0或$\frac{17}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2$\sqrt{2}sin\frac{π}{8}xcos\frac{π}{8}x+2\sqrt{2}{cos^2}\frac{π}{8}x-\sqrt{2}$,x∈R.
(1)求函数f(x)的最小正周期和单调递增区间;
(2)若函数f(x)图象上的两点P,Q的横坐标依次为1,5,O为坐标原点,求S△OPQ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1,求过椭圆内点P(4,2)且被P平分的弦所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}中,且a3=-1,a6=-7.
(1)求{an}的通项an
(2)求{an}前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设实数a,b满足a2+b2=1,则乘积ab的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.平行四边形ABCD中,$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BD}=(-4,2)$,则该四边形的面积为(  )
A.$\sqrt{5}$B.$2\sqrt{5}$C.5D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列不等式中成立的是(  )
A.若a>b,则ac2>bc2B.若a>b,则a2>b2
C.若a>b>0,则$\frac{b}{a}$>$\frac{b+1}{a+1}$D.若a>b>0,则a+$\frac{1}{b}$>b+$\frac{1}{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=4x2-4ax+a2-2a+2.
(1)若函数f(x)在区间[0,2]上的最大值记为g(a),求g(a)的解析式;
(2)若函数f(x)在区间[0,2]上的最小值为3,求实数a的值.

查看答案和解析>>

同步练习册答案