【题目】已知椭圆,三点中恰有二点在椭圆上,且离心率为。
(1)求椭圆的方程;
(2)设为椭圆上任一点, 为椭圆的左右顶点, 为中点,求证:直线与直线它们的斜率之积为定值;
(3)若椭圆的右焦点为,过的直线与椭圆交于,求证:直线与直线斜率之和为定值。
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ln x+ax2-2x,(a∈R,a≠0)
(1)若函数f(x)的图象在x=1处的切线与x轴平行,求f(x)的单调区间;
(2)若f(x)≤ax在x∈[,+∞)上恒成立,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.
(1)求证:BD⊥平面ACFE;
(2)当直线FO与平面BED所成的角为45°时,求异面直线OF与BE所成的角的余弦值大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l方程为(m+2)x-(m+1)y-3m-7=0,m∈R.
(Ⅰ)求证:直线l恒过定点P,并求出定点P的坐标;
(Ⅱ)若直线l在x轴,y轴上的截距相等,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,已知b=1,c=2且2cosA(bcosC+ccosB)=a,则A=__________;若M为边BC的中点,则|AM|=__________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为,则下列结论中不正确的是( )
A. 若该大学某女生身高为170cm,则可断定其体重必为
B. 回归直线过样本点的中心
C. 若该大学某女生身高增加1cm,则其体重约增加
D. y与x具有正的线性相关关系
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知是椭圆上的一点,从原点向圆作两条切线,分别交椭圆于点.
(1)若点在第一象限,且直线互相垂直,求圆的方程;
(2)若直线的斜率存在,并记为,求的值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com