精英家教网 > 高中数学 > 题目详情

【题目】某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示:
(1)依据频率分布直方图,估计这次考试的及格率(60分及以上为及格)和平均分;
(2)已知在[90,100]段的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,96,97,98,99,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.

【答案】
(1)解:由图知,60及以上的分数所在的第三、四、五、六组的频率和为(0.02+0.03+0.025+0.005)×10=0.80,

所以,估计这次考试的及格率为80%;

=45×0.05+55×0.15+65×0.2+75×0.3+8×0.25+95×0.05=72,

则估计这次考试的平均分是72分


(2)解:从95,96,97,98,99,100这6个数中任取2个数共有 =15个基本事件,

而[90,100]的人数有3人,则共有基本事件C =3.

则这2个数恰好是两个学生的成绩的概率P= =


【解析】(1)求出频率,用频率估计概率;(2)列出所有的基本事件,求概率.
【考点精析】利用频率分布直方图对题目进行判断即可得到答案,需要熟知频率分布表和频率分布直方图,是对相同数据的两种不同表达方式.用紧凑的表格改变数据的排列方式和构成形式,可展示数据的分布情况.通过作图既可以从数据中提取信息,又可以利用图形传递信息.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足,且 的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若数列满足,求数列的通项公式;

(Ⅲ)在(Ⅱ)的条件下,设,问是否存在实数使得数列)是单调递增数列?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(1, )是离心率为 的椭圆E: + =1(a>b>0)上的一点,过A作两条直线交椭圆于B、C两点,若直线AB、AC的倾斜角互补.
(1)求椭圆E的方程;
(2)试证明直线BC的斜率为定值,并求出这个定值;
(3)△ABC的面积是否存在最大值?若存在,求出这个最大值?若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)若曲线在点处的切线斜率为0,且有极小值,

求实数的取值范围.

(2)当 时,若不等式: 在区间内恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin(x+ )cosx.
(Ⅰ)求f(x)的值域;
(Ⅱ)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)= ,b=2,c=3,求cos(A﹣B)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的奇函数,且当时, ,则对任意,函数的零点个数至多有( )

A. 3个 B. 4个 C. 6个 D. 9个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图(1),五边形中, .如图(2),将沿折到的位置,得到四棱锥.点为线段的中点,且平面

(1)求证:平面平面

(2)若直线所成角的正切值为,设,求四棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学为了解高一年级学生身高发育情况,对全校700名高一年级学生按性别进行分层抽样检查,测得身高(单位: )频数分布表如表1、表2.

表1:男生身高频数分布表

表2:女生身高频数分布表

(1)求该校高一女生的人数;

(2)估计该校学生身高在的概率;

(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,设表示身高在学生的人数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有(
A.a>b
B.a<b
C.a=b
D.a,b的大小与m,n的值有关

查看答案和解析>>

同步练习册答案