【题目】某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,30这30个整数中等可能随机产生.
(1)分别求出(按程序框图正确编程运行时)输出y的值为i的概率Pi(i=1,2,3);
(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数,下面是甲、乙所作频数统计表的部分数据:
甲的频数统计表(部分)
运行次数 | 输出y=1 的频数 | 输出y=2 的频数 | 输出y=3 的频数 |
30 | 16 | 11 | 3 |
… | … | … | … |
2 000 | 967 | 783 | 250 |
乙的频数统计表(部分)
运行次数 | 输出y=1 的频数 | 输出y=2 的频数 | 输出y=3 的频数 |
30 | 13 | 13 | 4 |
… | … | … | … |
2 000 | 998 | 803 | 199 |
当n=2 000时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断甲、乙中谁所编写的程序符合算法要求的可能性较大.
【答案】(1)见解析;(2)乙所编写的程序符合算法要求的可能性较大.
【解析】试题分析:(1)由题意可得,变量x是从1,2,3,…30这30个整数中可能随机产生的一个数,共有30中结果,当变量x从1,3,5,7,9,11,13,15,17,19,21,23,25,27,29这15个整数中产生时,输出y的值为1,所以P1=,当变量x从2,4,6,8,12,14,16,18,22,24,26,28这12个整数中产生时,输出原点值为2,所以P2=,,当变量x从10,20,30这3个整数中产生时,输出y的值为3,所以P3=;
(2)当n=2000时,列出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率的表格,再比较频率趋势与概率,即可得解.
试题解析:
(1)由题意可得,变量x是从1,2,3,…,30这30个整数中可能随机产生的一个数,共有30种结果.
当变量x从1,3,5,7,9,11,13,15,17,19,21,23,25,27,29这15个整数中产生时,输出y的值为1,所以P1=.当变量x从2,4,6,8,12,14,16,18,22,24,26,28这12个整数中产生时,输出y的值为2,所以P2=,当变量x从10,20,30这3个整数中产生时,输出y的值为3,所以P3=.
(2)当n=2 000时,甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率如下,
n=2 000 | 输出y=1 的频数 | 输出y=2 的频数 | 输出y=3 的频数 |
甲 | |||
乙 |
比较频率可得,乙所编写的程序符合算法要求的可能性较大.
科目:高中数学 来源: 题型:
【题目】【2018河北保定市上学期期末调研】已知点到点的距离比到轴的距离大1.
(I)求点的轨迹的方程;
(II)设直线: ,交轨迹于、两点, 为坐标原点,试在轨迹的部分上求一点,使得的面积最大,并求其最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.
(1)求这次铅球投掷成绩合格的人数;
(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;
(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知a、b 两位同学的成绩均为优秀,求a、b 两位同学中至少有1人被选到的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校夏令营有3名男同学和3名女同学,其年级情况如下表,现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).
一年级 | 二年级 | 三年级 | |
男同学 | |||
女同学 |
(1)用表中字母列举出所有可能的结果;
(2)设为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件发生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始从左到右依次选取两个数字,则选出来的第5个个体的编号为_______
7816 6572 0802 6314 0702 4369 9728 0198
3204 9234 4935 8200 3623 4869 6938 7481
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xoy中,动点M到点F(1,0)的距离与它到直线x=2的距离之比为 .
(1)求动点M的轨迹E的方程;
(2)设直线y=kx+m(m≠0)与曲线E交于A,B两点,与x轴、y轴分别交于C,D两点(且C,D在A,B之间或同时在A,B之外).问:是否存在定值k,对于满足条件的任意实数m,都有△OAC的面积与△OBD的面积相等,若存在,求k的值;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com