精英家教网 > 高中数学 > 题目详情

【题目】我国是世界上严重缺水的国家,城市缺水问题较为突出,某市政府为了鼓励居民节约用水,计划在本市试行居民生活用水定额管理,即确定一个合理的居民月用水量标准:(单位:吨),用水量不超过的部分按平价收费,超过的部分按议价收费,为了了解全布市民用用水量分布情况,通过袖样,获得了100位居民某年的月用水量(单位:吨),将数据按照 …… 分成9组,制成了如图所示的频率分布直方图

1)求频率分布直方图中的值;

2)若该市政府看望使85%的居民每月的用水量不超过标准(吨),估计的值,并说明理由。

【答案】(1)0.30;(2)估计月用水量标准为2.9吨,85%的居民每月的用水量不超过标准

【解析】

1)利用频率分直方图中的矩形面积的和为1即可

2)先大体估计一下所在的区间,再根据区间的频率之和为0.85,求解的值

1)由直方图,可得

解得.

2)因为前6组频率之和为

而前5组的频率之和为

所以.

解得.因此,估计月用水量标准为2.9吨,85%的居民每月的用水量不超过标准.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,正四面体ABCD的棱长为a,点EF分别是棱BDBC的中点,则平面AEF截该正四面体的内切球所得截面的面积为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(Ⅰ)当a=1时,求函数的单调区间:

(Ⅱ)求函数的极值;

(Ⅲ)若函数有两个不同的零点,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市在进行创建文明城市的活动中,为了解居民对“创文”的满意程度,组织居民给活动打分(分数为整数.满分为100分).从中随机抽取一个容量为120的样本.发现所有数据均在内.现将这些分数分成以下6组并画出了样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形,回答下列问题:

(1)算出第三组的频数.并补全频率分布直方图;

(2)请根据频率分布直方图,估计样本的众数、中位数和平均数.(每组数据以区间的中点值为代表)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系下,方程的图形为如图所示的“幸运四叶草”,又称为玫瑰线.

(1)当玫瑰线的时,求以极点为圆心的单位圆与玫瑰线的交点的极坐标;

(2)求曲线上的点M与玫瑰线上的点N距离的最小值及取得最小值时的点MN的极坐标(不必写详细解题过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】5张奖券中有2张是中奖的,先由甲抽1张,然后由乙抽1张,抽后不放回,求:

1)甲中奖的概率

2)甲、乙都中奖的概率

3)只有乙中奖的概率

4)乙中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 (a>b>0)的左焦点为F上顶点为B. 已知椭圆的离心率为A的坐标为.

I)求椭圆的方程;

II)设直线l 与椭圆在第一象限的交点为Pl与直线AB交于点Q. (O为原点) k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的前项和为,且,数列为等差数列,且.

1)求数列的通项公式;

2)设,求数列的前项和

3)若对任意正整数,不等式均成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示.

1)求的值;

2)求上的最大值和最小值;

3)不画图,说明函数的图象可由的图象经过怎样变化得到.

查看答案和解析>>

同步练习册答案