精英家教网 > 高中数学 > 题目详情
9.定义在区间(0,+∞)上的函数f(x)>0,且f(x)<xf′(x)<2f(x)恒成立,其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$B.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$C.$\frac{1}{2}$<$\frac{f(1)}{f(2)}$<1D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

分析 分别构造函数g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),h(x)=$\frac{f(x)}{x}$,x∈(0,+∞),利用导数研究其单调性即可得出.

解答 解:解:令g(x)=$\frac{f(x)}{{x}^{2}}$,x∈(0,+∞),
g′(x)=$\frac{xf′(x)-2f(x)}{{x}^{3}}$,
∵?x∈(0,+∞),
f(x)<xf′(x)<2f(x)恒成立,
∴f(x)>0,$\frac{xf′(x)-2f(x)}{{x}^{3}}$<0,
∴g′(x)<0,
∴函数g(x)在x∈(0,+∞)上单调递减,
∴$\frac{f(1)}{1}$>$\frac{f(2)}{4}$,∴$\frac{f(1)}{f(2)}$>$\frac{1}{4}$.
令h(x)=$\frac{f(x)}{x}$,x∈(0,+∞),
h′(x)=$\frac{f′(x)x-f(x)}{{x}^{2}}$,
∵?x∈(0,+∞),f(x)<xf′(x)<2f(x)恒成立,
∴h′(x)>0,
∴函数h(x)在x∈(0,+∞)上单调递增,
∴$\frac{f(1)}{1}$<$\frac{f(2)}{2}$,
∴$\frac{f(1)}{f(2)}$<$\frac{1}{2}$.
综上可得:$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$.
故选:B.

点评 本题考查了利用导数研究其单调性极值与最值、构造函数法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知3i-2是关于x的方程2x2+px+q=0的一个根,则实数p+q=34.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一竖立在地面上的圆锥形物体的母线长为4m,侧面展开图的圆心角为$\frac{2π}{3}$,则这个圆锥的体积等于(  )
A.$\frac{\sqrt{15}}{3}$πm3B.$\frac{32\sqrt{35}}{27}$πm3C.$\frac{32\sqrt{35}}{81}$πm3D.$\frac{128\sqrt{2}}{81}$πm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.从点A(4,1)出发一束光线经过直线l1:x-3y+3=0反射,反射光线恰好通过点B(1,6).
(1)求点B关于直线l1的对称点B′的坐标;
(2)求入射光线l所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在R上的偶函数f(x)满足f(x)-f(x+2)=0,且当x∈[0,2]时,f(x)=2sin$\frac{π}{2}$x,记sgn(x)=$\left\{\begin{array}{l}{x,x>0}\\{0,x=0}\\{-x,x<0}\end{array}\right.$,则函数y=f(x)-sgn(log2(sgn(x)))的零点个数为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=2sin(2x+$\frac{π}{3}$)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.双曲线3y2-2x2=6的实轴长为$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆的焦点为F1(0,-1)和F2(0,1),点P($\frac{2\sqrt{5}}{5}$,2)在椭圆上,则椭圆的短轴长为(  )
A.2B.2$\sqrt{3}$C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知P,Q,R在直线l上,O为直线l外一点,若$\overrightarrow{OP}$=m$\overrightarrow{OQ}$+n$\overrightarrow{OR}$,且函数y=loga(x-b)-2(a>0.且α≠1),不论a为何值,恒过定点(m,n),则b=2.

查看答案和解析>>

同步练习册答案