精英家教网 > 高中数学 > 题目详情
已知离心率为
3
2
的椭圆
x2
a2
+
y2
b2
=1(a>b>0)
上的点到左焦点F的最长距离为
3
+2

(1)求椭圆的方程;
(2)如图,过椭圆的左焦点F任作一条与两坐标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条内角平分线,则称点M为该椭圆的“左特征点”,求椭圆的“左特征点”M的坐标.
分析:(1)利用椭圆
x2
a2
+
y2
b2
=1(a>b>0)
离心率为
3
2
,其上的点到左焦点F的最长距离为
3
+2
,可建立方程组,即可求得椭圆的方程;
(2)设M(m,0)为椭圆的左特征点,根据椭圆左焦点,设直线AB方程代入椭圆方程,由∠AMB被x轴平分,kAM+kBM=0,利用韦达定理,即可求得结论.
解答:解:(1)由题意知
a+c=
3
+2
c
a
=
3
2
,∴a=2,c=
3
,∴b=
a2-c2
=1

∴椭圆的方程为
x2
4
+y2 =1

(2)设M(m,0)为椭圆
x2
4
+y2 =1
的左特征点,椭圆的左焦点F(-
3
,0),
可设直线AB的方程为x=ky-
3
(k≠0)
代入
x2
4
+y2 =1
,得:(ky-
3
)y2+4y2=4,即(k2+4)y2-2
3
ky-1=0,
设A(x1,y1),B(x2,y2)得y1+y2=
2
3
k
k2+4
,y1y2=-
1
k2+4

∵∠AMB被x轴平分,kAM+kBM=0,即
y1
x1-m
+
y2
x2-m
=0

即y1(ky2-
3
)+y2(ky1-
3
)-(y1+y2)m=0
所以,2ky1y2-(y1+y2)(m+
3
)=0
于是,2k×(-
1
k2+4
)-
2
3
k
k2+4
×(m+
3
)=0
∵k≠0,∴1+
3
(m+
3
)=0,即m=-
4
3
3
,∴M(-
4
3
3
,0)
点评:本题以新定义为载体主要考查了椭圆性质的应用,直线与椭圆相交关系的处理,要注意解题中直线AB得方程设为x=ky-2(k≠0)的好处在于避免讨论直线的斜率是否存在.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•怀化三模)已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,F1,F2为椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率e=
3
2
S△DEF2=1-
3
2
.若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)称为点M的一个“椭点”.直线l与椭圆交于A,B两点,A,B两点的“椭点”分别为P,Q,已知以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的标准方程;
(2)△AOB的面积是否为定值?若为定值,试求出该定值;若不为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•怀化二模)如图展示了一个由区间(0,k)(其中k为一正实数)到实数集R上的映射过程:区间(0,k)中的实数m对应线段AB上的点M,如图1;将线段AB围成一个离心率为
3
2
的椭圆,使两端点A、B恰好重合于椭圆的一个短轴端点,如图2;再将这个椭圆放在平面直角坐标系中,使其中心在坐标原点,长轴在x轴上,已知此时点A的坐标为(0,1),如图3,在图形变化过程中,图1中线段AM的长度对应于图3中的椭圆弧ADM的长度.图3中直线AM与直线y=-2交于点N(n,-2),则与实数m对应的实数就是n,记作f(m)=n,

现给出下列5个命题①f(
k
2
)=6
;②函数f(m)是奇函数;③函数f(m)在(0,k)上单调递增;④函数f(m)的图象关于点(
k
2
,0)
对称;⑤函数f(m)=3
3
时AM过椭圆的右焦点.其中所有的真命题是(  )

查看答案和解析>>

科目:高中数学 来源:怀化三模 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(
3
3
2
)
,离心率e=
1
2
,若点M(x0,y0)在椭圆C上,则点N(
x0
a
y0
b
)
称为点M的一个“椭点”,直线l交椭圆C于A、B两点,若点A、B的“椭点”分别是P、Q,且以PQ为直径的圆经过坐标原点O.
(1)求椭圆C的方程;
(2)若椭圆C的右顶点为D,上顶点为E,试探究△OAB的面积与△ODE的面积的大小关系,并证明.

查看答案和解析>>

同步练习册答案