精英家教网 > 高中数学 > 题目详情
已知矩阵A=
2n
m1
的一个特征值为λ=2,它对应的一个特征向量为
α
=
1
2

(1)求m与n的值;     
(2)求A-1
考点:特征值与特征向量的计算,逆变换与逆矩阵
专题:选作题,矩阵和变换
分析:(1)根据特征值、特征向量的定义的定义,建立方程,利用矩阵的乘法法则化简求出m与n的值;
(2)利用待定系数法求A-1
解答: 解:(1)由题知:
2n
m1
1
2
=2
1
2

2+n=2
m+2=4
,所以m=2,n=0;
(2)由(1)知A=
20
21

设A-1=
ab
cd
,则
20
21
ab
cd
=
10
01

所以
2a=1
2b=0
2a+c=0
2b+2d=1

所以a=
1
2
,b=0,c=-1,d=
1
2

所以A-1=
1
2
0
-1
1
2
点评:本题考查待定系数法求矩阵,考查特征值与特征向量,理解特征值、特征向量的定义是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为d(d∈Z),前n项的和为Sn,且a3=20,185<S7<195.
(1)求数列{an}的通项公式.
(2)记bn=
1
anan+1
,{bn}的前n项的和为Tn,求证:Tn
1
42

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,经过点(0,
2
)且斜率为k的直线l与椭圆
x2
2
+y2
=1有两个不同的交点P、Q,
(Ⅰ)若|PQ|=
4
3
;求直线l的斜率k的值;
(Ⅱ)设椭圆与x轴正半轴、y轴正半轴的交点分别为A、B,是否存在常数k,使得向量
OP
+
OQ
AB
共线,如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a、b、c分别是△ABC的三个内角A、B、C所对的边
(1)若△ABC面积S△ABC=
3
2
,c=2,A=60°,求a、b的值;
(2)若
a
c
<cosB,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知定点F及定直线l,直线m经过F与l垂直,垂足为K,|FK|=p(p>0),动圆P经过F与l相切.
(Ⅰ)建立适当的直角坐标系,求出动圆圆心P轨迹C的方程;
(Ⅱ)经过点F的直线交(Ⅰ)中轨迹C于A、B两点,点C在直线l上,且BC⊥l.试问,直线AC与m的交点是否在轨迹C上?若不在,请说明理由;若在,请给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=
2
3
,an+1•(1+an)=1.
(1)试计算a2,a3,a4,a5的值;
(2)猜想|an+1-an|与
1
15
(
2
5
)n-1
(其中n∈N*)的大小关系,并证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C1
x2
4
+
y2
=1
,曲线C2
x2
+
y2
4λ2
=1(0<λ<1)
.曲线C2的左顶点恰为曲线C1的左焦点.
(Ⅰ)求λ的值;
(Ⅱ)设P(x0,y0)为曲线C2上一点,过点P作直线交曲线C1于A,C两点.直线OP交曲线C1于B,D两点.若P为AC中点.
①求证:直线AC的方程为x0x+2y0y=2;
②求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一颗骰子连掷100次,则点6出现次数X的均值E(X)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图D在AB上,DE∥BC,DF∥AC,AE=4,EC=2,BC=8.则CF=
 

查看答案和解析>>

同步练习册答案