【题目】已知函数 .
(1)判断函数f(x)在区间[0,+∞)上的单调性,并用定义证明其结论;
(2)求函数f(x)在区间[2,9]上的最大值与最小值.
【答案】
(1)解:f(x)在区间[0,+∞)上是增函数.
证明如下:
任取x1,x2∈[0,+∞),且x1<x2,
= = .
∵x1﹣x2<0,(x1+1)(x2+1)>0,
∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).
∴函数f(x)在区间[0,+∞)上是增函数
(2)解:由(1)知函数f(x)在区间[2,9]上是增函数,
故函数f(x)在区间[2,9]上的最大值为 ,
最小值为
【解析】(1)根据函数单调性的定义可证明结果。(2)根据函数的单调性以及二次函数在指定区间上的最值可得结果。
【考点精析】关于本题考查的函数的最值及其几何意义,需要了解利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】已知平面向量 , 满足| |=1,| |=2.
(1)若 与 的夹角θ=120°,求| + |的值;
(2)若(k + )⊥(k ﹣ ),求实数k的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}满足a1=2, ;数列{bn}的前n项和为Sn , 且 . (Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)把数列{an}和{bn}的公共项从小到大排成新数列{cn},试写出c1 , c2 , 并证明{cn}为等比数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列{an}的公差d不等于0,Sn是其前n项和,给出下列命题:
①给定n(n≥2,且n∈N*),对于一切k∈N*(k<n),都有an﹣k+an+k=2an成立;
②存在k∈N* , 使得ak﹣ak+1与a2k+1﹣a2k﹣3同号;
③若d>0.且S3=S8 , 则S5与S6都是数列{Sn}中的最小项
④点(1, ),(2, ),(3, ),…,(n, )(n∈N*),…,在同一条直线上.
其中正确命题的序号是 . (把你认为正确的命题序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校拟在广场上建造一个矩形花园,如图所示,中间是完全相同的两个椭圆型花坛,每个椭圆型花坛的面积均为216π平方米,两个椭圆花坛的距离是1.5米.整个矩形花坛的占地面积为S.
(注意:椭圆面积为πab,其中a,b分别为椭圆的长短半轴长)
(1)根据图中所给数据,试用a、b表示S;
(2)当椭圆形花坛的长轴长为多少米时,所建矩形花园占地最少?并求出最小面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,半径为2的半圆有一内接梯形ABCD,它的下底AB是⊙O的直径,上底CD的端点在圆周上.若双曲线以A、B为焦点,且过C、D两点,则当梯形ABCD的周长最大时,双曲线的实轴长为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a﹣1,2a],则( )
A. ,b=0
B.a=﹣1,b=0
C.a=1,b=1
D.a= ,b=﹣1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5],
(1)当a=﹣1时,求函数的最大值和最小值;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调减函数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是 .
①任意x∈R,都有3x>2x;
②若a>0,且a≠1,M>0,N>0,则有loga(M+N)=logaMlogaN;
③ 的最大值为1;
④在同一坐标系中,y=2x与 的图象关于y轴对称.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com