精英家教网 > 高中数学 > 题目详情

【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).

高校

相关人员

抽取人数

A

18

B

36

2

C

54

1)求

2)若从高校抽取的人中选2人做专题发言,求这2人都来自高校的概率.

【答案】(1) 2

【解析】

1)根据分层抽样的概念,可得,求解即可;

2)分别记从高校抽取的2人为,,从高校抽取的3人为,,,先列出从5人中选2人作专题发言的基本事件,再列出2人都来自高校的基本事件,进而求出概率

1)由题意可得,所以,

2)记从高校抽取的2人为,,从高校抽取的3人为,,,则从高校,抽取的5人中选2人作专题发言的基本事件有,,,,,,,,,10

设选中的2人都来自高校的事件为,包含的基本事件有,,3

因此,故选中的2人都来自高校的概率为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性;

2)若不等式在区间上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“中国式过马路”的大意是凑够一撮人即可走,跟红绿灯无关.部分法律专家的观点为“交通规则的制定目的就在于服务城市管理,方便行人,而‘中国式过马路’是对我国法治化进程的严重阻碍,反应了国人规则意识的淡薄.”某新闻媒体对此观点进行了网上调查,所有参与调查的人中,持“支持”“中立”和“不支持”态度的人数如表所示:

支持

中立

不支持

20岁以下

800

450

200

20岁及以上

100

150

300

在所有参与调查的人中,用分层随机抽样的方法抽取人,已知从持“支持”态度的人抽取了45人,则______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】二项式的二项式系数和为256.

(1)求展开式中二项式系数最大的项;

(2)求展开式中各项的系数和;

(3)展开式中是否有有理项,若有,求系数;若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个“太极函数”,则下列有关说法中:

①对于圆的所有非常数函数的太极函数中,一定不能为偶函数;

②函数是圆的一个太极函数;

③存在圆,使得是圆的一个太极函数;

④直线所对应的函数一定是圆的太极函数;

⑤若函数是圆的太极函数,则

所有正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为,左、右焦点分别是,以为圆心、3为半径的圆与以为圆心、1为半径的圆相交,交点在椭圆C上.

(1)求椭圆C的方程;

(2)直线与椭圆C交于A,B两点,点M是椭圆C的右顶点直线AM与直线BM分别与y轴交于点PQ,试问以线段PQ为直径的圆是否过x轴上的定点?若是,求出定点坐标;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年消毒液和口罩成了抢手年货,老百姓几乎人人都需要,但对于这种口罩,大多数人不是很了解.现随机抽取40人进行调查,其中45岁以下的有20人,在接受调查的40人中,对于这种口罩了解的占,其中45岁以上(含45岁)的人数占.

1)将答题卡上的列联表补充完整;

2)判断是否有的把握认为对这种口罩的了解与否与年龄有关.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正四棱锥中, 分别是

的中点,动点在线段上运动时,下列结论中不恒成立的是(  )

A. 异面 B. ∥面

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三边长分别为abc,有以下四个命题:

①以为边长的三角形一定存在;

②以为边长的三角形一定存在;

③以为边长的三角形一定存在;

④以为边长的三角形一定存在.

其中正确的命题为(

A.①③B.②③C.②④D.①④

查看答案和解析>>

同步练习册答案