精英家教网 > 高中数学 > 题目详情

【题目】《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额.此项税款按下表分段累计计算:

全月应纳税所得额

税率(

不超过1500元的部分

3

超过1500元至不超过4500元的部分

10

超过4500元至不超过9000元的部分

20

1)试建立当月纳税款与当月工资、薪金(总计不超过12500元)所得的函数关系式;

2)已知我市某国有企业一负责人十月份应缴纳税款为295元,那么他当月的工资、薪金所得是多少元?

【答案】1;(2)该负责人当月工资、薪金所得是7500.

【解析】

1)根据公民全月工资、薪金所得不超过3500元的部分不必纳税,超过3500元的部分为全月应纳税所得额,此项税款按表分段累计计算,从而得到当月纳税款与当月工资、薪金所得的函数关系式;

2)根据(1)可得当月的工资、薪金介于5000元,然后代入第三段解析式进行求解即可.

解:(1)根据题意,设当月工资、薪金为元,纳税款为元,

.

2当月的工资、薪金所得是5000元时应纳税元,

当月的工资、薪金所得是8000元时应纳税元,

可知当月的工资、薪金介于5000元,

由(1)知:

解得:(元),

所以该负责人当月工资、薪金所得是7500.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C的左右焦点分别为F1F2,点在椭圆C上,满足.

1)求椭圆C的标准方程;

2)直线l1过点P,且与椭圆只有一个公共点,直线l2l1的倾斜角互补,且与椭圆交于异于点P的两点MN,与直线x=1交于点K(K介于MN两点之间).

①问:直线PMPN的斜率之和能否为定值,若能,求出定值并写出详细计算过程;若不能,请说明理由;

②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,ABCD,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,如图2.

(Ⅰ)求证:BC⊥平面DBE

(Ⅱ)求点D到平面BEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线上一点到焦点的距离.

(1)求抛物线的方程;

(2)过点引圆的两条切线,切线与抛物线的另一交点分别为,线段中点的横坐标记为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】折纸是一项艺术,可以折出很多数学图形.将一张圆形纸片放在平面直角坐标系中,圆心B(-1,0),半径为4,圆内一点A为抛物线的焦点.若每次将纸片折起一角,使折起部分的圆弧的一点始终与点A重合,将纸展平,得到一条折痕,设折痕与线段B的交点为P

Ⅰ)将纸片展平后,求点P的轨迹C的方程;

Ⅱ)已知过点A的直线l与轨迹C交于RS两点,当l无论如何变动,在AB所在直线上存在一点T,使得所在直线一定经过原点,求点T的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

1)若,求的值;

2)设.①若函数在定义域上单调递增,求的取值范围;②若函数在定义域上不单调,试判定的零点个数,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,以原点为极点,x轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C的极坐标方程为,直线l的参数方程为,(t为参数).

1)求直线l的普通方程和曲线C的直角坐标方程;

2)若直线l与曲线C交于AB两点,,且,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某快递网点收取快递费用的标准是重量不超过的包裹收费10元,重量超过的包裹,除收费10元之外,超过的部分,每超出(不足,按计算)需要再收费5元.该公司近60天每天揽件数量的频率分布直方图如下图所示(同一组数据用该区间的中点值作代表).

1)求这60天每天包裹数量的平均数和中位数;

2)该快递网点负责人从收取的每件快递的费用中抽取5元作为工作人员的工资和网点的利润,剩余的作为其他费用.已知该网点有工作人员3人,每人每天工资100元,以样本估计总体,试估计该网点每天的利润有多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.

(I)求出的值;

(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);

(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.

查看答案和解析>>

同步练习册答案