精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中, 平面 .

(1)设点的中点,求证: 平面

(2)线段上是否存在一点,使得直线与平面所成的角的正弦值为?若存在,试确定点的位置;若不存在,请说明理由.

【答案】(1)见解析(2)中点

【解析】试题分析:(1)先取的中点,利用三角形中位线性质得,再根据线面平行判定定理得平面.根据计算,利用平几知识得,再根据线面平行判定定理得平面.从而利用面面平行判定定理得平面平面.最后根据面面平行性质得平面. (2)一般利用空间直角坐标系研究线面角,先根据条件建立恰当直角坐标系,设立各点坐标,利用方程组求出平面法向量,根据向量数量积求出向量夹角,最后利用线面角与向量夹角关系列方程,解出点坐标,确定其位置.

试题解析:(1)证明 取的中点,连接,则.

因为平面 平面,所以平面.

中, ,所以.

,所以.

因为平面 平面

所以平面.

又因为

所以平面平面.

因为平面

所以平面.

(注:(1)问也可建系来证明)

(2)过,交,又平面知以为原点, 分别为轴建系如图:

设平面PAC的法向量

,则

,∴

∴线段上存在一点 中点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】【山东省实验中学2017届高三第一次诊断】已知椭圆的右焦点过点且与坐标轴不垂直的直线与椭圆交于两点当直线经过椭圆的一个顶点时其倾斜角恰好为

(1)求椭圆的方程

(2)设为坐标原点线段上是否存在点使得?若存在,求出实数的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在直线方程为x﹣2y﹣5=0.求:
(1)顶点C的坐标;
(2)直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,若acosA﹣bcosB=0,则三角形的形状是(
A.等腰三角形
B.直角三角形
C.等腰直角三角形
D.等腰三角形或直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.

(1)求椭圆的方程;

(2)若上存在两点,椭圆上存在两个点满足: 三点共线, 三点共线且,求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】京剧是我国的国粹,是“国家级非物质文化遗产”,某机构在网络上调查发现各地京剧票友的年龄服从正态分布同时随机抽取位参与某电视台《我爱京剧》节目的票友的年龄作为样本进行分析研究(全部票友的年龄都在内),样本数据分别区间为由此得到如图所示的频率分布直方图.

(Ⅰ) 若的值;

(Ⅱ)现从样本年龄在的票友中组织了一次有关京剧知识的问答,每人回答一个问题,答对赢得一台老年戏曲演唱机,答错没有奖品,假设每人答对的概率均为,且每个人回答正确与否相互之间没有影响,用表示票友们赢得老年戏曲演唱机的台数,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C所对的边分别为a,b,c.且 =(cos(A﹣B),﹣sin(A﹣B)), =(cosB,sinB),若 =﹣ . (Ⅰ)求sin A的值;
(Ⅱ)若a=4 ,b=5,求向量 方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着手机的发展,“微信”越来越成为人们交流的一种方式.某机构对“使用微信交流”的态度进行调查,随机抽取了50人,他们年龄的频数分布及对“使用微信交流”赞成人数如下表.

年龄(单位:岁)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

[65,75)

频数

5

10

15

10

5

5

赞成人数

5

10

12

7

2

1

(Ⅰ)若以“年龄45岁为分界点”,由以上统计数据完成下面列联表,并判断是否有99%的把握认为“使用微信交流”的态度与人的年龄有关;

年龄不低于45岁的人数

年龄低于45岁的人数

合计

赞成

不赞成

合计

(Ⅱ)若从年龄在[25,35)和[55,65)的被调查人中按照分层抽样的方法选取6人进行追踪调查,并给予其中3人“红包”奖励,求3人中至少有1人年龄在[55,65)的概率.

参考数据如下:

附临界值表:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

的观测值: (其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】元旦期间,某轿车销售商为了促销,给出了两种优惠方案,顾客只能选择其中的一种,方案一:每满万元,可减千元;方案二:金额超过万元(含万元),可摇号三次,其规则是依次装有个幸运号、个吉祥号的一个摇号机,装有个幸运号、个吉祥号的二号摇号机,装有个幸运号、个吉祥号的三号摇号机各摇号一次,其优惠情况为:若摇出个幸运号则打折,若摇出个幸运号则打折;若摇出个幸运号则打折;若没有摇出幸运号则不打折.

(1)若某型号的车正好万元,两个顾客都选中第二中方案,求至少有一名顾客比选择方案一更优惠的概率;

(2)若你评优看中一款价格为万的便型轿车,请用所学知识帮助你朋友分析一下应选择哪种付款方案.

查看答案和解析>>

同步练习册答案