精英家教网 > 高中数学 > 题目详情

【题目】【选修4-4:坐标系与参数方程】

在平面直角坐标系中,曲线的参数方程为: 为参数, ),将曲线经过伸缩变换: 得到曲线.

(1)以原点为极点, 轴的正半轴为极轴建立坐标系,求的极坐标方程;

(2)若直线为参数)与相交于两点,且,求的值.

【答案】(1) (2)

【解析】试题分析】(1)先将的参数方程消参变为直销坐标方程,代入上述方程可得到的方程,代入极坐标和直角坐标转化公式可求得的极坐标方程.(2)写出直线的极坐标方程,分别代入的极坐标方程,求得对应,结合可求得的值.

试题解析】

(1)的普通方程为

代入上述方程得,

的方程为

所以的极坐标方程为

(2)在(1)中建立的极坐标系中,直线的极坐标方程为

,得

,得

,∴

,∴.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某同学学习习惯不好,把黑板上老师写的表达式忘了,记不清楚是还是.翻出草稿本发现在用五点作图法列表作图时曾算出过一些数据(如下表).

0

0

3

0

0

1)请你帮助该同学补充完表格中的数据,写出该函数的表达式,并写出该函数的最小正周期;

2)若利用的图象用图象变化法作的图象,其步骤如下:(在空格内填上合适的变换方法)

第一步:的图象向右平移_____得到_____的图象;

第二步:的图象(纵坐标不变)______得到_____的图象;

第三步:的图象(横坐标不变)_____得到的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】()(2017·开封二模)为备战某次运动会,某市体育局组建了一个由4个男运动员和2个女运动员组成的6人代表队并进行备战训练.

(1)经过备战训练,从6人中随机选出2人进行成果检验,求选出的2人中至少有1个女运动员的概率.

(2)检验结束后,甲、乙两名运动员的成绩用茎叶图表示如图:

计算说明哪位运动员的成绩更稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率分别是椭圆的左、右焦点,过的直线相交于A,B两点,的周长为

(1)求椭圆的方程;

(2)是否存在直线使为直角,若存在求出此时直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,四边形为菱形, ,且平面平面.

(1)求证:

(2)若 ,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)若不等式对于任意成立,求正实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】钓鱼岛及其附属岛屿是中国固有领土,如图:点ABC分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且AB两点的距离约为3海里.

1)求AC两点间的距离;(精确到0.01

2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是某超市一年中各月份的收入与支出单位:万元情况的条形统计图已知利润为收入与支出的差,即利润收入一支出,则下列说法正确的是  

A. 利润最高的月份是2月份,且2月份的利润为40万元

B. 利润最低的月份是5月份,且5月份的利润为10万元

C. 收入最少的月份的利润也最少

D. 收入最少的月份的支出也最少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,分别为的中点.

1)证明:平面

2)已知与平面所成的角为30°,求二面角的余弦值.

查看答案和解析>>

同步练习册答案