精英家教网 > 高中数学 > 题目详情
设函数f(x)在定义域D上满足f(
1
2
)=-1,f(x)≠0,且当x,y∈D时,f(x)+f(y)=f(
x+y
1+xy
).若数列{xn}中,x1=
1
2
xn+1=
2xn
1+
x
2
n
(xn∈D,n∈N×).则数列{f(xn)}的通项公式为(  )
A、f(xn)=2n-1
B、f(xn)=-2n-1
C、f(xn)=-3n+1
D、f(xn)=3n
分析:由所给的函数关系式知f(xn) +f(xn) =f(
2xn
1+xn2
)
,而数列之间又具备一个递推式,把递推式代入函数式得2f(xn)=f(xn+1),所以数列{f(xn)}是一个首项为-1,公比是2的等比数列,得到结果.
解答:解:∵f(x)+f(y)=f(
x+y
1+xy
)

f(xn) +f(xn) =f(
2xn
1+xn2
)

xn+1=
2xn
1+xn2

∴2f(xn)=f(xn+1),
∴数列{f(xn)}是首项为-1,公比是2的等比数列,
∴f(xn)=-2n-1
故选B
点评:数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,所以数列通常与函数知识结合起来,这种题目可以提高学生用函数的思想、方程的思想研究数列问题的自觉性、培养学生主动探索的精神和科学理性的思维方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)是定义在[-1,0)∪(0,1]上的奇函数,当x∈[-1,0)时,f(x)=
a
x
-x2
(a为实数).
(1)若f(
1
2
)=-2
,求a的值;
(2)当x∈(0,1]时,求f(x)的解析式;
(3)当a>2时,试判断f(x)在(0,1]上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数=f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数fK(x)=
f(x),f(x)≤K
K,f(x)>K.
取函数f(x)=2-|x|.当K=
1
2
时,函数fK(x)的单调递增区间为(  )
A、(-∞,0)
B、(0,+∞)
C、(-∞,-1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在(-∞,+∞)内有定义,对于给定的正数K,定义函数:fK(x)=
f(x),f(x)≤K
1
f(x)
,f(x)>K
,取函数f(x)=a11(a>1).当K=
1
a
时,函数f(x)值域是(  )
A、[0,
1
a
]∪[1,a)
B、(0,
1
a
]∪[1,a]
C、(0,1]∪[
1
a
,a)
D、(0,
1
a
]∪[1,a)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•浙江)设函数f(x)是定义在R上的周期为2的偶函数,当x∈[0,1]时,f(x)=x+1,则f(
3
2
)
=
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在(-∞,+∞)上的增函数,是否存在这样的实数a,使得不等式f(1-ax-x2)<f(2-a)对于任意x∈[0,1]都成立?若存在,试求出实数a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案