精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=x2+lnx-ax在(0,1)上是增函数,则实数a的取值范围是(-∞,$2\sqrt{2}$].

分析 根据函数f(x)是增函数,等价为f′(x)≥0在(0,1)上恒成立,即可得到结论.

解答 解:函数的定义域为(0,+∞),要使f(x)=lnx+x2-ax在定义域内是增函数,
则等价为f′(x)≥0在(0,1)上恒成立,
∵f(x)=lnx+x2-ax,
∴f′(x)=$\frac{1}{x}$+2x-a≥0,
即a≤$\frac{1}{x}$+2x在x∈(0,1)上恒成立,
当x>0时,y=$\frac{1}{x}$+2x≥2$\sqrt{2x•\frac{1}{x}}$=2$\sqrt{2}$,当且仅当x=$\frac{\sqrt{2}}{2}$时取等号.
则a≤2$\sqrt{2}$,
故答案为:(-∞,$2\sqrt{2}$].

点评 本题主要考查函数单调性的应用和判断,根据函数导数和单调性之间的关系转化为函数恒成立即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.设函数f(x)=3sin($\frac{π}{2}$x+$\frac{π}{4}$),若存在这样的实数x1,x2,对任意的x∈R,都有f(x1)≤f(x)≤f(x2)成立,则|x2-x1|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某公司欲将一批新鲜的蔬菜用汽车从A地运往相距125公里的B地,运费为每小时30元,装卸费为1000元,蔬菜在运输途中的损耗费(单位:元)是汽车速度(公里/小时)的2倍,为使运输的总费用不超过1200元,汽车的最高速度为每小时75公里.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知4x2-ax+1可变成(2x-b)2的形式,则ab=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题p:函数$y=x+\frac{2}{x}$在[1,4]上的值域为$[{3,\frac{9}{2}}]$;命题$q:log_{\frac{1}{2}}^{(a+1)}>log_{\frac{1}{2}}^a(a>0)$.下列命题中,真命题的是(  )
A.p∧qB.¬p∨qC.p∧¬qD.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图是一段程序它的功能是求函数y=$\left\{\begin{array}{l}{2x}&{x<3}\\{\stackrel{2}{{x}^{2}-1}}&{\stackrel{x=3}{x>3}}\end{array}\right.$的函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.为纪念中国抗日战争胜利70周年,某中学高三年级举办了“铭记历史,开创未来”的抗战历史知识竞赛活动,共有1000名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计,请你根据频率分布表,解答下列问题:
序号分组频数频率
1[60,70)0.15
2[70,80)200.2
3[80,90)350.35
4[90,100)30
合计1001
(1)写出频率分布表中①、②所代表的数据;
(2)在所给坐标系中画出样本的频率分布直方图;
(3)为鼓励更多的学生了解“抗战历史”知识,对成绩不低于90分的学生给予奖励,请估计在参加竞赛的1000名学生中大概有多少名学生获奖.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.关于下列说法
①描述算法可以有不同的方式;
②方差和标准差具有相同的单位;
③根据样本估计总体,其误差与所选择的样本容量无关;
④从总体中可以抽取不同的几个样本;
⑤如果容量相同的两个样本的方差满足$S_1^2<S_2^2$,那么推得总体也满足$S_1^2<S_2^2$是错的.
其中正确的有①④.(只填对应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知二次函数f(x)=x2-2ax+2.
(1)当a=1时,求函数f(x)的单调区间;
(2)求函数f(x)在[2,4]上的最大值与最小值.

查看答案和解析>>

同步练习册答案