精英家教网 > 高中数学 > 题目详情

【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DEAB,AB为短轴,OC为长半轴

(1)求梯形ABDE上底边DE与高OH长的关系式;

(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围

【答案】(1);(2

【解析】试题分析:

(1)所在直线为轴, 所在直线为轴,建立直角坐标系,可得半椭圆的方程: ,设点,可得。(2))设半椭圆上一点为由条件得,结合对称轴得到,从而,即为所求范围。

试题解析

1)以所在直线为轴, 所在直线为轴,建立直角坐标系

半椭圆的方程:

设椭圆上点

所以

所以.

2)设半椭圆上一点为

由题可知点

所以

又函数图象的对称轴为

所以

解得

所以

由(1)知

所以底边DE的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司2016年前三个月的利润(单位:百万元)如下:

月份

1

2

3

利润

2

3.9

5.5

(1)求利润关于月份的线性回归方程;

(2)试用(1)中求得的回归方程预测4月和5月的利润;

(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?

相关公式:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,与轴的正半轴交于点,右焦点 为坐标原点,且

(1)求椭圆的离心率

(2)已知点,过点任意作直线与椭圆交于两点,设直线的斜率,若,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】襄阳农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温度与实验室每天每100颗种子中的发芽数,得到如下数据:

襄阳农科所确定的研究方案是:先从这5组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

(1)求选取的2组数据恰好是不相邻的2天数据的概率;

(2)若选取的是12月1日与12月5日这两组数据,情根据12月2日至12月4日的数据,求关于的线性回归方程

(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过1颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

注: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,EBC的中点,F在棱AC上,且AF=3FC

(1)求三棱锥D-ABC的体积

(2)求证:平面DAC⊥平面DEF;

(3)若MDB中点,N在棱AC上,且CN=CA,求证:MN∥平面DEF

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线与圆O: 且与椭圆C: 相交于A,B两点

(1)若直线恰好经过椭圆的左顶点,求弦长AB;

(2)设直线OA,OB的斜率分别为k1,k2,判断k1·k2是否为定值,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项均为正数的数列{an}的首项a1=1,Sn是数列{an}的前n项和,且满足:anSn+1﹣an+1Sn+an﹣an+1= anan+1 , 则 S12=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的三个顶点 ,求:

1边上的高所在直线的方程;

2的垂直平分线所在直线的方程;

3边的中线的方程.

查看答案和解析>>

同步练习册答案