已知命题p:函数在(0,1)内恰有一个零点;命题q:函数在上是减函数,若p且为真命题,则实数a的取值范围是( )
A. B.a≤2 C. 1<a≤2 D.a≤l或a>2
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)
(文科学生做)已知命题p:函数在R上存在极值;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
(理科学生做)已知命题p:对,函数有意义;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分16分)
(文科学生做)已知命题p:函数在R上存在极值;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
(理科学生做)已知命题p:对,函数有意义;
命题q:设A={x| x 2 + 2 x 3<0}, B={x| x 2 (a +1) x + a >0},若对,都有;
若为真,为假,试求实数a的取值范围。
查看答案和解析>>
科目:高中数学 来源:2012届福建省邵武四中高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)(1)已知a>0且a1常数,求函数定义
域和值域;
(2)已知命题P:函数在上单调递增;命题Q:不等式
对任意实数恒成立;若是真命题,求实数的取值范
围
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)(1)已知a>0且a1常数,求函数定义
域和值域;
(2)已知命题P:函数在上单调递增;命题Q:不等式
对任意实数恒成立;若是真命题,求实数的取值范
围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com