精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=,其中c为常数,且函数fx)的图象过原点.

(1)求c的值,并求证:f)+fx)=1;

(2)判断函数fx)在(-1,+∞)上的单调性,并证明.

【答案】(1)c=0 ,见证明;(2)见证明;

【解析】

(1)根据图像过原点可得c值,对f)+fx)进行化简即可得到证明;(2)由函数单调性的定义利用作差法即可得到证明.

(1)函数fx)图象过原点;

f(0)=-c=0;

c=0;

(2)

函数fx)在(-1,+∞)上是单调递增函数,证明如下:

任取x1x2∈(-1,+∞),且x1x2,则:

x1x2∈(-1,+∞),且x1x2

x1-x2<0,x1+1>0,x2+1>0;

fx1)<fx2);

∴函数fx)在(-1,+∞)上是单调递增函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】abZ,若对任意x≤0,都有(ax+2)(x2+2b)≤0,则a+b=______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,,恒成立时的范围是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(ax+1)(x≥0,a>0), .

(1)讨论函数y=f(x)-g(x)的单调性;

(2)若不等式f(x)≥g(x)+1在x∈[0,+∞)时恒成立,求实数a的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,角的终边经过点.若的图象上任意两点,且当时,的最小值为.

(1) 的值

(2)求函数上的单调递减区间;

(3)当时,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是(  )
A.y=sinx
B.y=lnx
C.y=ex
D.y=x3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=
(1)证明:a+b=2c;
(2)求cosC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于每项均是正整数的数列Aa1a2,…,an,定义变换T1T1将数列A变换成数列T1(A):na1-1,a2-1,…,an-1.对于每项均是非负整数的数列Bb1b2,…,bm,定义变换T2T2将数列B各项从大到小排列,然后去掉所有为零的项,得到数列T2(B).又定义S(B)=2(b1+2b2+…+mbm)++…+.A0是每项均为正整数的有穷数列,令Ak1T2(T1(Ak))(k=0,1,2,…).

(1)如果数列A02,6,4,8,写出数列A1A2

(2)对于每项均是正整数的有穷数列A,证明:S(T1(A))=S(A);

(3)证明:对于任意给定的每项均为正整数的有穷数列A0,存在正整数K,当kK时,S(Ak1)=S(Ak).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据市场调查发现,某种产品在投放市场的30天中,其销售价格(元)和时间(天)的关系如图所示.

(1)求销售价格(元)和时间(天)的函数关系式;

(2)若日销售量(件)与时间(天)的函数关系式是 ,问该产品投放市场第几天时,日销售额(元)最高,且最高为多少元?

查看答案和解析>>

同步练习册答案