精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)= ,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1 , x2 , x3 , x4 , x5 , h(x)=lg|x﹣4|,则h(x1+x2+x3+x4+x5)等于(
A.3
B.lg12
C.lg20
D.4lg2

【答案】D
【解析】解:x=4时,f(x)=2,4+2b+c=0,c=﹣4﹣2b,x1=4,
x>4时,f(x)=3x4 , f(x)2+bf(x)+c=(3x42+bxx4+c=0,
故3x4=2,或3x4=﹣2+b,
x2=log32+4,x3=log3(﹣2+b)+4,
x<4时,f(x)=3x+4
故3x+4=2或3x+4=﹣2+b,
故x4=﹣log32+4,x5=﹣log3(﹣2+b)+4,
故x1+x2+x3+x4+x5=20,
故h(x1+x2+x3+x4+x5)=lg(20﹣4)=lg16=4lg2,
故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为实常数.

(1)设,当时,求函数的单调区间;

(2)当时,直线与函数的图象一共有四个不同的交点,且以此四点为顶点的四边形恰为平行四边形.求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:
1)已知两平面的法向量分别为 =(0,1,0), =(0,1,1),则两平面所成的二面角为45°或135°;
2)若曲线 + =1表示双曲线,则实数k的取值范围是(﹣∞,﹣4)∪(1,+∞);
3)已知双曲线方程为x2 =1,则过点P(1,1)可以作一条直线l与双曲线交于A,B两点,使点P是线段AB的中点.
其中正确命题的序号是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了普及法律知识,增强市民的法制观念,针对本市特定人群举办网上学法普法考试.为了解参考人群的法律知识水平,从一次普法考试中随机抽取了50份答卷进行分析,得到这50份答卷成绩的统计数据如下:

成绩分组

频数

2

5

12

16

10

5

(1)在答题卡的图中作出样本数据的频率分布直方图;

(2)试根据统计数据,估计本次普法考试的平均成绩和中位数( 同一组中的数据用该组区间的中点值作代表);

(3)已知该市有100 万人参加考试,得分低于60 分的需要重考(不低于60 分为合格,不再重考).若每次重考的合格率都比上一次考试低6 个百分点,试估计第3 次重考的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班学生进行了三次数学测试,第一次有8名学生得满分,第二次有10名学生得满分,第三次有12名学生得满分,已知前两次均为满分的学生有5名,三次测试中至少又一次得满分的学生有15名.若后两次均为满分的学生至多有名,则的值为( )

A. 7 B. 8 C. 9 D. 10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题
①方程ax2+x+1=0有且只有一个实根的充要条件是a=
②函数y= + 是偶函数,但不是奇函数;
③函数f(x)=(2x﹣3)2+1的图象是由函数y=(2x﹣5)2+1的图象向左平移1个单位得到的;
④命题“若x,y都是偶数,则x+y也是偶数”的逆命题为真命题;
⑤已知p,q是简单命题,若p∨q是真命题,则p∧q也是真命题;
⑥若函数f(x)=|ax﹣1|﹣log2(x+2),(a>1)有两个零点x1 , x2 , 则(x1+2)(x2+2)>1.
其中正确的个数是(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,F是椭圆C: =1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间20名工人年龄数据如下表:

年龄(岁)

工人数(人)

19

1

28

3

29

3

30

5

31

4

32

3

40

1

合计

20


(1)求这20名工人年龄的众数与极差;
(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(3)求这20名工人年龄的方差.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点A(x , y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已知时间t=0时,点A的坐标是( ),则当0≤t≤12时,动点A的纵坐标y关于 t(单位:秒)的函数的单调递增区间是

查看答案和解析>>

同步练习册答案