精英家教网 > 高中数学 > 题目详情

函数f(x)的定义域为(0,+∞),对于任意的正实数m,n,都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0,证明f(x)在(0,+∞)上是减函数.

解:设0<x1<x2
∵f(mn)=f(m)+f(n),即f(mn)-f(m)=f(n)
∴f(x2)-f(x1)=
因为0<x1<x2,则
而当x>1时,f(x)<0,从而f(x2)<f(x1
于是f(x)在(0,+∞)上是减函数.
分析:根据函数单调性的定义可知,先在(0,+∞)上任取两值并规定大小,将条件进行转化成f(mn)-f(m)=f(n),将两值代入,根据条件进行判定符号即可得到函数的单调性.
点评:本题主要考查了抽象函数及其应用,以及函数单调性的判断与证明和不等式的解法,属于基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案