精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)= 是偶函数,则下列结论可能成立的是(
A. ??
B.
C. ??
D.

【答案】B
【解析】解:根据题意,设x>0,则﹣x<0, 则有f(x)=sin(x+α),f(﹣x)=cos(﹣x﹣β),
又由函数f(x)是偶函数,则有sin(x+α)=cos(﹣x﹣β),
变形可得:sin(x+α)=cos(x+β),
即sinxcosα+cosxsinα=cosxcosβ﹣sinxsinβ,
必有:sinα=cosβ,cosα=﹣sinβ,
分析可得:α=β+
分析选项只有B满足α=β+
故选:B.
【考点精析】认真审题,首先需要了解函数奇偶性的性质(在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣ )﹣cos2x. (Ⅰ)求f( )的值;
(Ⅱ)求函数f(x)的最小正周期和单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”根据已知条件完成下面的2×2列联表,并据此资料你是否认为“体育迷“与性别有关?

非体育迷

体育迷

合计

10

55

合计

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列关于命题的说法错误的是(
A.命题“若x2﹣3x+2=0,则x=1”的逆否命题为“若x≠1,则x2﹣3x+2≠0”
B.“a=2”是“函数f(x)=logax在区间(0,+∞)上为增函数”的充分不必要条件
C.若命题P:n∈N,2n>1000,则﹣P:n∈N,2n≤1000
D.命题“x∈(﹣∞,0),2x<3x”是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间20名工人年龄数据如表:

年龄(岁)

19

24

26

30

34

35

40

合计

工人数(人)

1

3

3

5

4

3

1

20

(Ⅰ) 求这20名工人年龄的众数与平均数;
(Ⅱ) 以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;
(Ⅲ) 从年龄在24和26的工人中随机抽取2人,求这2人均是24岁的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c
(1)若a,b,c成等比数列, ,求 的值;
(2)若A,B,C成等差数列,且b=2,设A=α,△ABC的周长为l,求l=f(α)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 的两条渐近线分别为l1 , l2 , 经过右焦点F垂直于l1的直线分别交l1 , l2 于 A,B 两点.若| |,| |,| |成等差数列,且 反向,则该双曲线的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】C.[选修4-4:坐标系与参数方程]
在平面直角坐标系 中,已知直线 (l为参数)与曲线 为参数)相交于 两点,求线段 的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(x﹣1)ex+ax2有两个零点. (Ⅰ)求a的取值范围;
(Ⅱ)设x1 , x2是f(x)的两个零点,证明x1+x2<0.

查看答案和解析>>

同步练习册答案