精英家教网 > 高中数学 > 题目详情
(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)若不等式|x+1|+|x-2|≥a对任意x∈R恒成立,则a的取值范围是
 

B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE=
 

精英家教网
C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1
x=3+cosθ
y=sinθ
 (θ为参数)和曲线C2:p=1上,则|AB|的最小值为
 
分析:A.首先分析题目已知不等式|x+1|+|x-2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x-2|的最小值即可.对于求|x+1|+|x-2|的最小值,可以分析它几何意义:在数轴上点x到点-1的距离加上点x到点2的距离.分析得当x在-1和2之间的时候,取最小值,即可得到答案;
B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;
C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.
解答:解:A.已知不等式|x+1|+|x-2|≥a恒成立,即需要a小于等于|x+1|+|x-2|的最小值即可.
故设函数y=|x+1|+|x-2|. 设-1、2、x在数轴上所对应的点分别是A、B、P.
则函数y=|x+1|+|x-2|的含义是P到A的距离与P到B的距离的和.
可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.
即:y=|x+1|+|x-2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x-2|的最小值为3.
即:k≤3.
故答案为:(-∞,3].
B.∵∠B=∠D,AE⊥BC,∠ACD=90°
∴Rt△ABE∽Rt△ADC
而AB=6,AC=4,AD=12,
根据AD•AE=AB•AC解得:AE=2,
故答案为:2
C. 
x=3+cosθ
y=sinθ
  消去参数θ得,(x-3)2+y2=1
而p=1,则直角坐标方程为x2+y2=1,点A在圆(x-3)2+y2=1上,点B在圆x2+y2=1上
则|AB|的最小值为1.
故答案为:1
点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x-a|+|x-b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网三选一题(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A(几何证明选讲)如图,⊙O的两条弦AB,CD相交于圆内一点P,若PA=PB,PC=2,PD=8,OP=4,则该圆的半径长为
 

B(坐标系与参数方程)曲线C1
x=1+cosθ 
y=sinθ 
(θ为参数)
上的点到曲线C2
x=-2
2
+
1
2
t
y=1-
1
2
t
(t为参数)
上的点的最短离为
 

C(不等式选讲)不等式|2x-1|-|x-2|<0的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A.(不等式选做题)不等式|2x-1|<3的解集为
(-1,2)
(-1,2)

B、(选修4-1几何证明选讲) 如图所示,AC和AB分别是⊙O的切线,且OC=3,AB=4,延长AO到D点,则△ABC的面积是
192
25
192
25

C.(坐标系与参数方程选做题)参数方程
x=cosα
y=1+sinα
(α为参数)化成普通方程为
x2+(y-1)2=1
x2+(y-1)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(几何证明选讲选做题)如图,点A,B,C是圆O上的点,且BC=6,∠BAC=120°,则圆O的面积等于
12π
12π

(2)(不等式选讲选做题)若存在实数x满足|x-3|+|x-m|<5,则实数m的取值范围为
(-2,8)
(-2,8)

(3)(极坐标与参数方程选讲选做题)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为
7
10
10
的点的个数有
2
2
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本题为选做题,请在下列三题中任选一题作答)
A(《几何证明选讲》选做题).如图:直角三角形ABC中,∠B=90°,AB=4,以BC为直径的圆交边AC于点D,AD=2,则∠C的大小为
30°
30°

B(《坐标系与参数方程选讲》选做题).已知直线的极坐标方程为ρsin(θ+
π
4
)=
2
2
,则点A(2,
4
)到这条直线的距离为
2
2
2
2

C(不等式选讲)不等式|x-1|+|x|<3的解集是
(-1,2)
(-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(极坐标与参数方程选讲选做题)设曲线C的参数方程为
x=2+3cosθ
y=-1+3sinθ
(θ为参数),直线l的方程为x-3y+2=0,则曲线C上的动点P(x,y)到直线l距离的最大值为
3+
7
10
10
3+
7
10
10

B.(不等式选讲选做题)若存在实数x满足不等式|x-3|+|x-5|<m2-m,则实数m的取值范围为
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)

C.(几何证明选讲选做题)如图,PC切⊙O于点C,割线PAB经过圆心O,弦CD⊥AB于点E.已知⊙O的半径为3,PA=2,则PC=
4
4
.OE=
5
9
5
9

查看答案和解析>>

同步练习册答案