精英家教网 > 高中数学 > 题目详情

【题目】已知x,y∈R,满足2≤y≤4﹣x,x≥1,则 的最大值为

【答案】
【解析】解:由2≤y≤4﹣x,x≥1,作出可行域如图, 令t= ,其几何意义为可行域内的动点(x,y)与定点P(﹣1,1)连线的斜率,
联立 ,解得A(1,3),
联立 ,解得B(2,2).

∴t∈[ ,1].

= =
设f(t)= ,则由“对勾函数”的单调性可知,f(t)= 在[ ,1]上为减函数,
∴当t= 时,
所以答案是:

【考点精析】认真审题,首先需要了解函数的最值及其几何意义(利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知正方形的对角线相交于点,将沿对角线折起,使得平面平面(如图),则下列命题中正确的是( )

A. 直线直线,且直线直线

B. 直线平面,且直线平面

C. 平面平面,且平面平面

D. 平面平面,且平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知三棱柱 ,侧面 .
(Ⅰ)若 分别是 的中点,求证:
(Ⅱ)若三棱柱 的各棱长均为2,侧棱 与底面 所成的角为 ,问在线段 上是否存在一点 ,使得平面 ?若存在,求 的比值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为521,则由此可估计π的近似值为(
A.3.119
B.3.126
C.3.132
D.3.151

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】的内角所对的边分别是,且的等差中项.

(Ⅰ)求角

(Ⅱ)设,求周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过 做抛物线 的两条切线,切点分别为 , .若 .
(1)求抛物线 的方程;
(2) ,过 任做一直线交抛物线 两点,当 也变化时,求 的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在统计学中,偏差是指个别测定值与测定的平均值之差,在成绩统计中,我们把某个同学的某科考试成绩与该科班平均分的差叫某科偏差,班主任为了了解个别学生的偏科情况,对学生数学偏差x(单位:分)与物理偏差y(单位:分)之间的关系进行学科偏差分析,决定从全班56位同学中随机抽取一个容量为8的样本进行分析,得到他们的两科成绩偏差数据如下:

学生序号

1

2

3

4

5

6

7

8

数学偏差x

20

15

13

3

2

-5

-10

-18

物理偏差y

6.5

3.5

3.5

1.5

0.5

-0.5

-2.5

-3.5

(1)已知xy之间具有线性相关关系,求y关于x的线性回归方程;

(2)若这次考试该班数学平均分为118分,物理平均分为90.5,试预测数学成绩126分的同学的物理成绩.

参考公式: ,.

参考数据: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2
(Ⅰ) 求角A的大小;
(Ⅱ) 若b+c=2,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线.

)求圆的标准方程;

)设直线经过点,且与圆相交所得弦长为,求直线的方程.

查看答案和解析>>

同步练习册答案