精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=lnx+ax2+ax

1)若曲线yfx)在点P1f1))处的切线与直线y4x+1平行,求实数a的值;

2)若时,关于x的方程在(02]上恰有两个不相等的实数根,求实数b的取值范围.

【答案】1a1.(2[ln25).

【解析】

1)求导后,进行求解;(2)分离参数通过画出新函数图象,根据直线和函数图象有两个交点求出实数b的取值范围.

1)由题意,fx2ax+ax0

根据题意,有f1)=3a+14

解得a1

2)由题意,fx)=lnxx2x

lnxx2xx+b

blnxx2x

gx)=lnxx2xx0.则

gxx

gx)=0,解得x1,或x2

gx)>0,解得0x1,或x2

gx)<0,解得1x2

∴函数gx)在(01)上单调递增,在(12)上单调递减,

x1处取得极大值g1

x2处取得极小值g2)=ln25

故函数gx)在(02]上大致图象如下:

根据题意及图,可知

实数b的取值范围为:[ln25).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】实数ab满足ab>0ab,由ab按一定顺序构成的数列(  )

A. 可能是等差数列,也可能是等比数列

B. 可能是等差数列,但不可能是等比数列

C. 不可能是等差数列,但可能是等比数列

D. 不可能是等差数列,也不可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知抛物线的顶点为坐标原点,焦点轴的正半轴上,过点的直线与抛物线相交于两点,且满足

(1)求抛物线的方程;

(2)若是抛物线上的动点,点轴上,圆内切于,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义域为R的函数,若函数是奇函数,则称为正弦奇函数.已知 是单调递增的正弦奇函数,其值域为R.

1)已知是正弦奇函数,证明:为方程的解的充要条件是为方程的解

2)若,求的值;

3)证明:是奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】mn是两条不同直线,αβγ是三个不同平面,给出下列四个命题:

①若mαnα,则mn;②若αββγmα,则mγ

③若mαnα,则mn;④若mαmβ,则αβ

其中正确命题的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励职员工作热情,某公司对每位职员一年来的工作业绩按月进行考评打分;年终按照职员的月平均值评选公司最佳职员并给予相应奖励.已知职员一年来的工作业绩分数的茎叶图如图所示:

1)根据职员的业绩茎叶图求出他这一年的工作业绩的中位数和平均数;

2)由于职员的业绩高,被公司评为年度最佳职员,在公司年会上通过抽奖形式领取奖金.公司准备了六张卡片,其中一张卡片上标注奖金为6千元,两张卡片的奖金为4千元,另外三张的奖金为2千元.规则是:获奖职员需要从六张卡片中随机抽出两张,这两张卡片上的金额数之和作为奖金数.求职员获得奖金6千元的概率;并说明获得奖金6千元和8千元哪个可能性较大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)时,若曲线与曲线存在唯一的公切线,求实数的值;

(3)时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足,当点在圆上运动时,点在线段上,且,点的轨迹为曲线.

(1)求曲线的方程;

(2)过抛物线的焦点作直线交抛物线于两点,过且与直线垂直的直线交曲线于另一点,求面积的最小值,以及取得最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,的值域为,当时,的值域为,依此类推,一般地,当时,的值域为,其中为常数,且

1)若,求数列的通项公式;

2)若,问是否存在常数,使得数列满足?若存在,求的值;若不存在,请说明理由;

3)若,设数列的前项和分别为,求

查看答案和解析>>

同步练习册答案