精英家教网 > 高中数学 > 题目详情
5.△ABC内有一点P,且P为△ABC三条中线的交点,则点P为△ABC的(  )
A.内心B.外心C.重心D.垂心

分析 利用三角形重心定义求解.

解答 解:∵△ABC内有一点P,且P为△ABC三条中线的交点,
∴由三角形重心定义知:
点P为△ABC的重心.
故选:C.

点评 本题考查三角形五心的判断,是基础题,解题时要认真审题,注意重心定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知定点${F_1}(-\sqrt{2},0)$,动点B是圆${F_2}:{(x-\sqrt{2})^2}+{y^2}=12$(F2为圆心)上一点,线段F1B的垂直平分线交BF2于P.
(1)求动点P的轨迹方程;
(2)若直线y=kx+2(k≠0)与P点的轨迹交于C、D两点.且以CD为直径的圆过坐标原点,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知双曲线的一条渐近线方程是y=-$\frac{3}{2}$x,焦距为2$\sqrt{13}$,求此双曲线的标准方程;
(2)求以双曲线$\frac{{y}^{2}}{16}$-$\frac{{x}^{2}}{9}$=1的焦点为顶点,顶点为焦点的椭圆标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log2$\frac{1}{3}$),b=f(log25),c=f(2m),则a,b,c的大小关系为(  )
A.<b<cB.a<c<bC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知圆M:(x+1)2+y2=1圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)若过点(1,0)的直线与曲线C交于R,S两点,问是否在x轴上存在一点T,使得当k变动时总有∠OTS=∠OTR?若存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.P是椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1上一点,F1、F2分别是椭圆的左、右焦点,若∠F1PF2=$\frac{π}{3}$,则△F1PF2的面积为(  )
A.$16\sqrt{3}$B.$3\sqrt{3}$C.$9\sqrt{3}$D.$9(2+\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若tanα,tanβ是方程x2-3$\sqrt{3}$x+4=0的两个根,且$α,β∈(0,\frac{π}{2})$,则α+β=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知圆C过点A(1,4),B(3,2),且圆心C在直线x+y-3=0上.
(1)求圆C的方程;
(2)若点P(x,y)是圆C上的动点,z=x+y,求z的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某同学在研究相邻三个整数的算术平方根之间的关系时,发现以下三个式子均是正确的:①$\sqrt{1}$+$\sqrt{3}$<2$\sqrt{2}$;②$\sqrt{2}$+$\sqrt{4}$<2$\sqrt{3}$;③$\sqrt{3}$+$\sqrt{5}$<2$\sqrt{4}$
(1)已知$\sqrt{2}∈(1.41$,1.42),$\sqrt{3}∈(1.73$,1.74),$\sqrt{5}∈(2.23$,2.24),请从以上三个式子中任选一个,结合此范围,验证其正确性(注意不能近似计算);
(2)请将此规律推广至一般情形,并证明之.

查看答案和解析>>

同步练习册答案