精英家教网 > 高中数学 > 题目详情
如图,有一边长为2米的正方形钢板缺损一角(图中的阴影部分),边缘线是以直线为对称轴,以线段的中点为顶点的抛物线的一部分.工人师傅要将缺损一角切割下来,使剩余的部分成为一个直角梯形.

(Ⅰ)请建立适当的直角坐标系,求阴影部分的边缘线的方程;
(Ⅱ)如何画出切割路径,使得剩余部分即直角梯形的面积最大?
并求其最大值.
(I) .(Ⅱ)当时,可使剩余的直角梯形的面积最大,其最大值为.  

试题分析:(I)以为原点,直线轴,建立如图所示的直角坐标系,

依题意
可设抛物线弧的方程为
∵点的坐标为, ∴
故边缘线的方程为.
(Ⅱ)要使梯形的面积最大,则所在的直线必与抛物线弧相切,设切点坐标为,   ∵
∴直线的的方程可表示为,即 , 由此可求得.
,   
设梯形的面积为,则
. ∴当时,
的最大值为. 此时.
答:当时,可使剩余的直角梯形的面积最大,其最大值为.  
点评:解应用题常用的方法是依据题意建立等量关系,构造数学模型利用函数的性质进行求解,而有些应用题有明显的几何意义,可以考虑利用解析法根据题意建立适当的坐标系,构造曲线方程,利用曲线的性质进行求解.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(满分12分)已知函数.(Ⅰ) 求上的最小值;(Ⅱ) 若存在是常数,=2.71828)使不等式成立,求实数的取值范围;
(Ⅲ) 证明对一切都有成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)当时,求证:函数上单调递增;
(Ⅱ)若函数有三个零点,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知关于x的方程的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则的取值范围________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是(    )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线在点处的切线斜率为                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

我们把形如的函数称为幂指函数,幂指函数在求导时,可以利用对数法:在函数解析式两边取对数得,两边对求导数,得,于是,运用此方法可以求得函数处的切线方程是­________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数,其中.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线的切线,求实数的值;
(Ⅲ)设,求在区间上的最大值.(其中为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是定义在R上的奇函数,且f(2)=0,当x>0时,有的导数<0恒成立,则不等式的解集是:
A.(一2,0)(2,+ B.(一2,0)(0,2)
C.(-,-2)(2,+ D.(-,-2)(0,2)

查看答案和解析>>

同步练习册答案