精英家教网 > 高中数学 > 题目详情
以下四个结论:
①若a?α,b?β,则a,b为异面直线;
②若a?α,b?α,则a,b为异面直线;
③没有公共点的两条直线是平行直线;
④两条不平行的直线就一定相交.
其中正确答案的个数是(  )
分析:分别根据条件结合异面直线的定义,判断空间直线的位置关系即可.
解答:解:①满足若a?α,b?β的直线a,b可能是异面直线,可能是平行直线也可能是相交直线.所以①错误.
②根据直线和平面的位置关系可知,平面内的直线和平面外的直线,可能是异面直线,可能是平行直线,也可能相交,所以②错误.
③在空间中,没有公共点的两条直线是平行直线或者是异面直线,所以③错误.
④在空间中,两条不平行的直线可能是异面直线,所以④错误.
故选A.
点评:本题主要考查空间直线的位置关系的判断,要求熟练掌握空间直线的三种位置关系:平行,相交和异面直线.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出以下四个结论:
(1)函数f(x)=
x-1
x+1
的对称中心是(-1,-1);
(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,则3b-2a>1;
(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
π
12
其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下四个结论:
(1)函数f(x)=
x-1
2x+1
的对称中心是(-
1
2
,-
1
2
)

(2)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2;
(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,当a>0且a≠1,b>0时,
b
a-1
的取值范围为(-∞,-
1
3
)∪(
2
3
,+∞)

其中正确的结论是:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“若m≤0,则x2-2x+m=0有实数解”的逆命题;命题q:“若函数f(x)=lg(x2+2x+a)的值域为R,则a>1”.以下四个结论:
①p是真命题;
②p∧q是假命题;
③p∨q是假命题;
④¬q为假命题.
其中所有正确结论的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•福建模拟)给出以下四个结论:
(1)若关于x的方程x-
1
x
+k=0
在x∈(0,1)没有实数根,则k的取值范围是k≥2
(2)曲线y=1+
4-x2
(|x|≤2)
与直线y=k(x-2)+4有两个交点时,实数k的取值范围是(
5
12
3
4
]

(3)已知点P(a,b)与点Q(1,0)在直线2x-3y+1=0两侧,则3b-2a>1;
(4)若将函数f(x)=sin(2x-
π
3
)
的图象向右平移?(?>0)个单位后变为偶函数,则?的最小值是
π
12
,其中正确的结论是:
(2)(3)(4)
(2)(3)(4)

查看答案和解析>>

科目:高中数学 来源:“伴你学”新课程 数学·选修1-2(人教B版) 人教B版 题型:013

已知z1,z2是复数,以下四个结论:

(1)若z1+z2=0,则z1=0且z2=0

(2)若|z1|+|z2|=0,则z1=0且z2=0;

(3)若z1=0,则z1=0

(4)若|z1|=|z2|,则向量重合.

其中正确的是

[  ]
A.

仅(2)

B.

仅(2)(3)

C.

仅(2)(3)(4)

D.

仅(2)(4)

查看答案和解析>>

同步练习册答案