精英家教网 > 高中数学 > 题目详情

【题目】已知曲线C1:ρ=1,曲线C2(t为参数)

(1)求C1与C2交点的坐标;

(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.

【答案】(1)(﹣)(2)见解析

【解析】

(1)结合计算方程对于可以消去参数t,得到普通方程,联立两个方程,得到交点坐标,即可。(2)实际上将y乘以利用第一题的思想,计算参数方程,联解两曲线的普通方程,判定即可。

(1)∵曲线C1:ρ=1,∴C1的直角坐标方程为x2+y2=1,

∴C1是以原点为圆心,以1为半径的圆,

∵曲线C2(t为参数),∴C2的普通方程为x﹣y+=0,是直线,

联立,解得x=﹣,y=

∴C2与C1只有一个公共点:(﹣).

(2)压缩后的参数方程分别为

(θ为参数)(t为参数),

化为普通方程为::x2+4y2=1,:y=

联立消元得

其判别式

∴压缩后的直线与椭圆仍然只有一个公共点,和C1与C2公共点个数相同.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四边形是正方形, 平面 分别为 的中点.

1)求证: 平面

2)求平面与平面所成锐二面角的大小;

3)在线段上是否存在一点,使直线与直线所成的角为?若存在,求出线段的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为25cm的正方形中挖去边长为23cm的两个等腰直角三角形,现有均匀的粒子散落在正方形中,问粒子落在中间带形区域的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是2017年第一季度中国某五省情况图,则下列陈述正确的是( )

①2017年第一季度 总量高于4000亿元的省份共有3个;

②与去年同期相比,2017年第一季度五个省的总量均实现了增长;

③去年同期的总量前三位依次是省、省、省;

④2016年同期省的总量居于第四位.

A. ①② B. ②③④ C. ②④ D. ①③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于的方程的不同实数根的个数为,则的所有可能值为( )

A. 3 B. 1或3 C. 3或5 D. 1或3或5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数是定义在 上的偶函数,当时, ).

(1)当时,求的解析式;

(2)若,试判断的上单调性,并证明你的结论;

(3)是否存在,使得当时, 有最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,焦点为,其准线与轴交于点.椭圆:分别以为左、右焦点,其离心率,且抛物线和椭圆的一个交点记为.

(1)时,求椭圆的标准方程;

(2)(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰中, ,腰长为 分别是边的中点,将沿翻折,得到四棱锥,且为棱中点,

(Ⅰ)求证: 平面

(Ⅱ)在线段上是否存在一点,使得平面?若存在,求二面角的余弦值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下结论错误的是(

A.命题“若,则”的逆否命题为“若,则

B.命题“”是“”的充分条件

C.命题“若,则有实根”的逆命题为真命题

D.命题“,则”的否命题是“,则

查看答案和解析>>

同步练习册答案