精英家教网 > 高中数学 > 题目详情

已知a,b,c∈R,满足|a-c|<|b|,则下列不等式成立的是


  1. A.
    a<b+c
  2. B.
    |a|>|b+c|
  3. C.
    a<c-b
  4. D.
    |a|<|b|+|c|
D
解析:

分析:由于|a|-|c|≤|a-c|,再利用条件|a-c|<|b|可得|a|-|c|≤|b|,即|a|<|b|+|c|,从而得到答案.
解答:∵|a|-|c|≤|a-c|,再由|a-c|<|b|可得|a|-|c|≤|b|,∴|a|<|b|+|c|,故选D.
点评:本题考查绝对值不等式的性质的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

50、已知a,b,c∈R,证明:a2+4b2+9c2≥2ab+3ac+6bc.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
(1)已知x,y都是正实数,求证:x3+y3≥x2y+xy2
(2)已知a,b,c∈R+,且a+b+c=1,求证:a2+b2+c2 ≥ 
13

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R+且满足a+2b+3c=1,则
1
a
+
1
2b
+
1
3c
的最小值为
9
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知a,b,c∈R,且a+b+c=1,求证:a2+b2+c2
1
3

(2)a,b,c为互不相等的正数,且abc=1,求证:
1
a
+
1
b
+
1
c
a
+
b
+
c

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,且a>b,那么下列不等式中成立的是(  )

查看答案和解析>>

同步练习册答案