精英家教网 > 高中数学 > 题目详情

【题目】如图所示,已知O的半径是1,点C在直径AB的延长线上,BC=1,点P是O上半圆上的一个动点,以PC为边作等边三角形PCD,且点D与圆心分别在PC的两侧

(1)若∠POB=θ,试将四边形OPDC的面积y表示为关于θ的函数;

(2)求四边形OPDC面积的最大值

【答案】(1) (2) 2+

【解析】试题分析:(1)第(1)问,先利用余弦定理求出再利用分割的方法求四边形OPDC的面积表达式. (2)第(2)问,利用三角函数的图像和性质求函数y的最大值.

试题解析:

(1)在△POC中,由余弦定理得PC2=OP2+OC2—2OP·OC·cosθ=5—4cosθ.

所以y=SOPC+SPCD .

(2),即ymax=2+.

答:四边形OPDC面积的最大值为2+.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴、y轴上的截距相等,求切线的方程;
(2)从圆C外一点P(x1 , y1)向圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数独游戏越来越受人们喜爱,今年某地区科技馆组织数独比赛,该区甲、乙、丙、丁四所学校的学生积极参赛,参赛学生的人数如表所示:

中学

人数

30

40

20

10

为了解参赛学生的数独水平,该科技馆采用分层抽样的方法从这四所中学的参赛学生中抽取30名参加问卷调查.
(Ⅰ)问甲、乙、丙、丁四所中学各抽取多少名学生?
(Ⅱ)从参加问卷调查的30名学生中随机抽取2名,求这2名学生来自同一所中学的概率;
(Ⅲ)在参加问卷调查的30名学生中,从来自甲、丙两所中学的学生中随机抽取2名,用X表示抽得甲中学的学生人数,求X的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若离散型随机变量ξ的概率分布如表所示,则a的值为( )

ξ

﹣1

1

P

4a﹣1

3a2+a


A.
B.﹣2
C. 或﹣2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥S﹣ABC中,SB⊥底面ABC,且SB=AB=2,BC= ,D、E分别是SA、SC的中点.

(I)求证:平面ACD⊥平面BCD;
(II)求二面角S﹣BD﹣E的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=

(1)试比较f(f(-3))f(f(3))的大小;

(2)画出函数的图象

(3)f(x)=1,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},{bn}满足2Sn=(an+2)bn , 其中Sn是数列{an}的前n项和.
(1)若数列{an}是首项为 ,公比为﹣ 的等比数列,求数列{bn}的通项公式;
(2)若bn=n,a2=3,求证:数列{an}满足an+an+2=2an+1 , 并写出数列{an}的通项公式;
(3)在(2)的条件下,设cn= , 求证:数列{cn}中的任意一项总可以表示成该数列其他两项之积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四边形ABCD内接于圆O

(1)若AB=2,BC=6,CD=4,AC=8,求BD

(2)若AC=,BC=+1,∠ADB=,求AD2+DC2的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,角A、B、C所对的边分别为a、b、c,且tanA﹣tanB= (1+tanAtanB).
(Ⅰ)若c2=a2+b2﹣ab,求角A、B、C的大小;
(Ⅱ)已知向量 =(sinA,cosA), =(cosB,sinB),求|3 ﹣2 |的取值范围.

查看答案和解析>>

同步练习册答案